Tengfei Song | Sodium-ion Batteries | Excellence in Research Award

Dr. Tengfei Song | Sodium-ion Batteries | Excellence in Research Award

University of Birmingham | United Kingdom

Dr. Tengfei Song is an accomplished research fellow and battery materials specialist with over a decade of experience driving innovation in lithium-ion and sodium-ion energy storage technologies. His work bridges industry and academia, with a strong focus on translating laboratory breakthroughs into scalable, real-world battery solutions. He earned his PhD from the University of Birmingham, where his research centered on engineering electrode–electrolyte interfaces in sodium-ion batteries to achieve long cycle life, supported by advanced electrochemical testing and materials characterisation. Earlier, he completed a master’s degree at Jiangnan University, concentrating on the synthesis and modification of cathode materials for high-power, low-cost lithium-ion batteries. Professionally, he has held senior R&D roles in industry, contributing to the development of LiFePO₄ batteries for telecom base stations and data centres, while also playing a key role in establishing a provincial laboratory for electrochemical energy storage and leading projects on graphene-enhanced batteries. Currently, his research focuses on sodium-ion battery development, sustainable electrode systems, novel cathode materials, and full-cell optimisation under major UK and EU projects. His contributions include numerous peer-reviewed publications and industry recognition awards for technical excellence. Overall, Dr. Song’s career reflects a sustained commitment to advancing next-generation battery technologies through impactful research, collaboration, and scale-up expertise.

Citation Metrics (Scopus)

400

300

200

100

0

Citations
371

Documents
13

h-index
9

 

Citations

Documents

h-index


View Scopus ProfileView ORCID Profile

Featured Publications

Mr. Ahmaa Abuhaiba | Thermodynamics | Best Researcher Award

Mr. Ahmaa Abuhaiba | Thermodynamics | Best Researcher Award

West London Institute of Technology, Uxbridge College | United Kingdom

Mr. Ahmad Abuhaiba is a dedicated mechanical engineer and academic with strong expertise in turbomachinery, energy systems, and power electronics. He holds a Master of Philosophy in Mechanical Engineering from City St George’s, University of London, a Bachelor’s degree in Mechanical Engineering from the Islamic University of Gaza, and completed an exchange programme at the University of Glasgow. He also earned an Award in Education and Training from City & Guilds. Currently serving as a Lecturer in Mechanical Engineering at Uxbridge College, London, he delivers higher education courses in mechanical and energy systems while managing workshops and leading practical, project-based learning. His prior experience includes academic and research roles at London Premier Centre, City St George’s University of London, Stavanger University, and the University of Birmingham. His research focuses on micro-gas turbines, silicon-carbide power converters, energy efficiency, and sustainable power systems. He has published peer-reviewed work on microturbine design and performance enhancement. Ahmad’s teaching philosophy integrates research-led learning with practical engineering applications. His academic achievements and dedication to advancing clean energy technologies reflect his commitment to innovation and engineering excellence.

Profile: Orcid

Featured Publications

Ahmad Abuhaiba (2025). “Reducing Greenhouse Gas Emissions from Micro Gas Turbines Using Silicon Carbide Switches.” Methane.

Ahmad Abuhaiba (2025). “Size Reduction in Micro Gas Turbines Using Silicon Carbide.” Gases.

Ahmad Abuhaiba (2025). “Size Reduction in Micro Gas Turbines Using Silicon Carbide.” Preprints.

Ahmad Abuhaiba, Mohsen Assadi, Dimitra Apostolopoulou, Jafar Al-Zaili, & Abdulnaser I. Sayma (2023). “Power Transmission and Control in Microturbines’ Electronics: A Review.” Energies

Ms. Abhishiktha Chiliveru | Renewable Energy and Fuel Cells | Best Researcher Award

Ms. Abhishiktha Chiliveru | Renewable Energy and Fuel Cells | Best Researcher Award

Ariel University | Israel

Ms. Abhishiktha Chiliveru is a Ph.D. scholar in the Department of Chemical Engineering, Biotechnology, and Materials at Ariel University, Israel, under the supervision of Professor Rivka Cahan. Her current research focuses on advancing sustainable bioenergy by studying nanoparticles-fed Geobacter sulfurreducens biofilms in microbial electrolysis cells (MEC) for enhanced hydrogen production. She previously worked as a Project Associate at CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, contributing to projects on lipid production from oleaginous yeast, microbial diversity in anaerobic digestion, and high-rate biomethanation of organic wastes for bioenergy generation. Abhishiktha earned her M.Sc. in Microbiology from Jawaharlal Nehru Technological University, Hyderabad, after completing a B.Sc. in Microbiology, Genetics, and Chemistry from Osmania University. Her strong academic foundation is complemented by hands-on expertise in microbial electrochemical systems, anaerobic digestion, microbial isolation, and advanced instrumentation techniques such as confocal microscopy, UV-VIS spectroscopy, and dynamic light scattering. She has actively participated in several international and national conferences, workshops, and symposiums, including the 5th MEEP Symposium in Switzerland. Her research interests span bioremediation, solid waste management, wastewater treatment, and bioenergy recovery, with a focus on applying microbial systems for environmental sustainability. Abhishiktha’s dedication to innovative microbial technologies reflects her commitment to advancing green energy solutions.

Author Profiles: Orcid | Google Scholar

Featured Publications

Hirsch, L.O., Gandu, B., Chiliveru, A., Dubrovin, I.A., Rozenfeld, S., Schechter, A., & Cahan, R. (2024). “The performance of a modified anode using a combination of kaolin and graphite nanoparticles in microbial fuel cells.” Microorganisms

Dubrovin, I.A., Hirsch, L.O., Chiliveru, A., Jukanti, A., Rozenfeld, S., Schechter, A., & Cahan, R. (2024). “Microbial electrolysis cells based on a bacterial anode encapsulated with a dialysis bag including graphite particles.” Microorganisms

Hirsch, L.O., Gandu, B., Chiliveru, A., Dubrovin, I.A., Jukanti, A., Schechter, A., & Cahan, R. (2024). “Hydrogen production in microbial electrolysis cells using an alginate hydrogel bioanode encapsulated with a filter bag.” Polymers

Vemparala, G., Chiliveru, A., Begum, S., Al Amri, M.B.F., & Anupoju, G.R. (2025). “Analyzing and optimizing the lipids production potential of the oleaginous yeast Candida neerlandica from synthetic carbon sources and real wastes.” Next Research

Juntupally, S., Begum, S., Chiliveru, A., Arelli, V., & Anupoju, G.R. (2022). “Relative evaluation of FeCl₃ salts and its nanoparticles on methane yield and sulphide inhibition control during biomethanation of distillery spent wash.” Journal of Water Process Engineering

Chiliveru, A., Yadav, M.K., Ebenezer, J., Jukanti, A., Bar Hanun, E., Borenstein, A., Schechter, A., & Cahan, R. (2025). “Current generation in microbial electrolysis cells based on an abiotic anode and planktonic G. sulfurreducens in the presence of suspended reduced graphene oxide and activated ….” Journal of Environmental Chemical Engineering

Bar-Hanun, E., Hanya, E., Chiliveru, A., & Cahan, R. (2025). “The influence of moderate electroporation on E. coli membrane permeability.” Microorganisms

Mr. Manish Yadav | Nanomaterials | Best Researcher Award

Mr. Manish Yadav | Nanomaterials | Best Researcher Award

Ariel University | Israel

Manish Yadav is a dedicated researcher in electrochemical CO₂ reduction, with expertise in advanced nanomaterials, catalysis, and sustainable energy solutions. He recently completed his PhD in Chemistry at Ariel University, Israel, where his doctoral work focused on understanding the nature of laser-processed, metal-doped carbon-based materials for CO₂ electro-reduction into valuable commodity products. His research involved the synthesis of highly graphitized reduced carbon nanodots through laser irradiation, controlled doping of copper nanomaterials in carbon supports, and the development of laser-assisted single-atom catalysts. Prior to this, he pursued his BS-MS Integrated degree at the Indian Institute of Science Education and Research (IISER) Mohali, where his thesis explored the kinetic stability of halogenated azobenzene isomers through structural, kinetic, and computational studies. His academic journey is marked by multiple recognitions, including the prestigious Excellence Award in Doctoral Research in 2023 and 2025. His findings have been presented in several international conferences across Israel, France, Spain, and Germany, and he has contributed high-impact publications in journals such as Carbon and ACS Applied Energy Materials. With strong skills in spectroscopy, microscopy, electrochemistry, and computational modeling, he continues to advance the design and mechanistic understanding of catalysts for clean energy and environmental sustainability.

Profiles: Orcid | Google Scholar

Featured Publications

Porat, H., Lal, A., Dutta, A., Yadav, M.K., Sesu, D.C., Minnes, R., & Borenstein, A. (2025). Nickel-oxide embedded laser-induced graphene for high-performance supercapacitors. Nanoscale.

Yadav, M.K., Dutta, A., Lal, A., Porat, H., Zidki, T., & Borenstein, A. (2025, September 8). Laser-Induced Synthesis of Copper-Based Nanomaterials for CO₂ Electroreduction into Methanol. ACS Applied Energy Materials.

Lal, A., Porat, H., Dutta, A., Yadav, M.K., & Borenstein, A. (2025, June 25). Laser‐Induced HKUST‐1 Derived Porous Electrocatalyst: An Innovative Approach to Boost Sustainable Ammonia Synthesis. Advanced Sustainable Systems.

Dutta, A., Manjunath, K., Porat, H., Lal, A., Yadav, M.K., Mandić, V., Laikhtman, A., Zak, A., Makrinich, G., & Borenstein, A. et al. (2024). Plasma-Treated 1D Transition Metal Dichalcogenides for Efficient Electrocatalytic Hydrogen Evolution Reaction. Journal of Materials Chemistry A.

Yadav, M.K., & Borenstein, A. (2022, October). Is precarbonization necessary for effective laser graphitization? Carbon.

Das, D., Yadav, M.K., Singla, L., Kumar, A., Karanam, M., Dev, S., & Choudhury, A.R. (2020, November 30). Understanding of the kinetic stability of cis-isomer of azobenzenes through kinetic and computational studies. ChemistrySelect.

 

Dr. Shihua Liu | Proton Exchange Membrane Fuel Cell | Best Researcher Award

Dr. Shihua Liu | Proton Exchange Membrane Fuel Cell | Best Researcher Award

Henan University of Technology | China

Dr. Shihua Liu is a dedicated researcher in mechanical engineering whose expertise lies in the field of fuel cell technology, particularly Proton Exchange Membrane Fuel Cells (PEMFC). He earned his Doctorate in Mechanical Engineering from Wuhan University of Technology in 2020 and has since served as a Lecturer at the School of Mechanical and Electrical Engineering, Henan University of Technology. His primary research interests focus on the biomimetic design of PEMFC flow field plates, water management in fuel cells, and performance optimization of PEMFCs with dead-ended anode (DEA). Dr. Liu has successfully completed multiple research projects supported by national science foundations and has made significant contributions through over twenty academic publications in high-impact domestic and international journals. His innovative work has also led to more than ten invention patents, nine of which have been granted, showcasing his strong applied development skills alongside theoretical research. His studies have advanced understanding in areas such as gas supply optimization, humidity regulation, emission strategies, and new material preparation, providing critical insights into enhancing fuel cell performance and efficiency. Recognized for his groundbreaking achievements, Dr. Liu continues to contribute impactful research that bridges fundamental science and practical energy applications.

Profile: Scopus

Featured Publications

Liu, S., (2025). “Numerical simulation and experimental study on the effect of anode pressure on the performance of the proton exchange membrane fuel cell with dead-ended anode.” Energy Technology.

Liu, S., (2025). “The study on the performance of air-cooled open-cathode PEMFC with dead-ended anode.” International Journal of Green Energy.