Tengfei Song | Sodium-ion Batteries | Excellence in Research Award

Dr. Tengfei Song | Sodium-ion Batteries | Excellence in Research Award

University of Birmingham | United Kingdom

Dr. Tengfei Song is an accomplished research fellow and battery materials specialist with over a decade of experience driving innovation in lithium-ion and sodium-ion energy storage technologies. His work bridges industry and academia, with a strong focus on translating laboratory breakthroughs into scalable, real-world battery solutions. He earned his PhD from the University of Birmingham, where his research centered on engineering electrode–electrolyte interfaces in sodium-ion batteries to achieve long cycle life, supported by advanced electrochemical testing and materials characterisation. Earlier, he completed a master’s degree at Jiangnan University, concentrating on the synthesis and modification of cathode materials for high-power, low-cost lithium-ion batteries. Professionally, he has held senior R&D roles in industry, contributing to the development of LiFePO₄ batteries for telecom base stations and data centres, while also playing a key role in establishing a provincial laboratory for electrochemical energy storage and leading projects on graphene-enhanced batteries. Currently, his research focuses on sodium-ion battery development, sustainable electrode systems, novel cathode materials, and full-cell optimisation under major UK and EU projects. His contributions include numerous peer-reviewed publications and industry recognition awards for technical excellence. Overall, Dr. Song’s career reflects a sustained commitment to advancing next-generation battery technologies through impactful research, collaboration, and scale-up expertise.

Citation Metrics (Scopus)

400

300

200

100

0

Citations
371

Documents
13

h-index
9

 

Citations

Documents

h-index


View Scopus ProfileView ORCID Profile

Featured Publications

Enno Wagner | Thermodynamics | Excellence in Research Award

Prof. Dr. Enno Wagner | Thermodynamics | Excellence in Research Award

Frankfurt University of Applied Sciences, Germany

Prof. Dr. Enno Wagner is a distinguished academic and engineering expert whose career spans mechatronic design, hydrogen systems, and advanced energy technologies. He earned his mechanical engineering degree with a specialization in energy technology from the Technical University of Darmstadt, where he later completed a doctoral thesis in technical thermodynamics focusing on heat and mass transport and high-resolution measurement techniques. His professional journey includes impactful roles at renowned organizations such as the Fraunhofer ISE, EVONIK Degussa, Stiebel Eltron, and the Schunk Group, where he led multidisciplinary teams in product design, automation, electronics, and control technology. Since 2019, he has served as Professor for Mechatronic Design and Engineering Mechanics at the Frankfurt University of Applied Sciences, directing the Mechatronics bachelor program, teaching engineering design and hydrogen technologies, and leading the hydrogen technology laboratory. His research interests center on alkaline water electrolysis, entropy analysis using bubble dynamics, and compact hydrogen storage solutions, contributing significantly to the broader field of sustainable energy systems. Recognized for his scientific contributions, leadership, and innovation in fuel cell and hydrogen research, he continues to advance cutting-edge knowledge and inspire future engineers through his academic and research endeavors.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Wagner, E., Delp, E., & Mishra, R. (2023). “Energy storage with highly-efficient electrolysis and fuel cells: Experimental evaluation of bifunctional catalyst structures” in Topics in Catalysis.

Wagner, E., & Kohnke, H.-J. (2020). “Another chance for classic AFCs? Experimental investigation of a cost-efficient unitized regenerative alkaline fuel cell using platinum-free gas diffusion electrodes” in Fuel Cells.

Wagner, E. (2018). “Betrachtung von Nachhaltigkeit und Umweltverträglichkeit mithilfe des neuen Syntropie-Index” in Ökologisches Wirtschaften.

Wagner, E. (2009). “Hochauflösende Messungen beim Blasensieden von Reinstoffen und binären Gemischen” (Doctoral Dissertation, Deutsche Nationalbibliothek).

Wagner, E., & Stephan, P. (2009). “High-resolution measurements at nucleate boiling of pure FC-84 and FC-3284 and its binary mixtures” in Journal of Heat Transfer.

Wagner, E., Sodtke, C., Schweizer, N., & Stephan, P. (2006). “Experimental study of nucleate boiling heat transfer under low gravity conditions using TLCs for high-resolution temperature measurements” in Heat and Mass Transfer.

Wittstadt, U., Wagner, E., & Jungmann, T. (2005). “Membrane electrode assemblies for unitised regenerative polymer electrolyte fuel cells” in Journal of Power Sources.

Moganesh G | Green Extract Metal Oxide | Best Researcher Award

Dr. Moganesh G | Green Extract Metal Oxide | Best Researcher Award

Saveetha Engineering College | India

Dr. Moganesh G is a dedicated researcher and academician whose work spans physics, materials science, and nanotechnology, with a strong foundation built through advanced degrees including a Doctor of Philosophy in Physics from Sacred Heart College, Thiruvalluvar University. His research career began with contributions at DTR Research Foundation, followed by roles as Lecturer, Research Professor, Assistant Professor, and Director at various reputed institutions, and he currently serves as Research Faculty at Saveetha Engineering College. His expertise centers on nanomaterials synthesis, green synthesis approaches, photocatalysis, nuclear physics, solar cell device fabrication, and the development of energy-storage materials with emerging applications in anti-cancer and anti-diabetic studies. He has made notable scientific contributions, including the development of a Photon-Induced Method for material synthesis and innovative AC TIMER research highlighted in local media. Dr. Moganesh has been honoured with multiple recognitions, such as the Best Researcher Award at the 2nd International Research Awards on Science, Health and Engineering (2020) and the International Plant Scientist Award (2025). Through his extensive teaching, research leadership, and continuous innovation, he remains committed to advancing sustainable materials and interdisciplinary solutions that address scientific and societal challenges.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Govindhan, M., Selvaraj, S., & Sukumar, K. (2025). Fluorometric detection of CIP and bioimaging employing a fluorescent nanoprobe with blue emission using carbon quantum dots from papaya seeds (Carica papaya). Journal of Environmental Chemical Engineering.

Govindhan, M. (2025). Green synthesis of structural and bandgap engineering nickel oxide nanostructure for visible light photocatalyst. Catalysis Letters.

Tamilarasu, S., & Govindhan, M. (2025). Phase stability and band-gap engineering of pure TiO₂ for visible light photocatalyst via photon-induced method. Journal of Sol-Gel Science and Technology.

Govindhan, M. (2025). Structural and optical engineering of MgO–ZnO nanocomposite via photon-induced method. Ceramics International.

Sasikumar, P., Chinnaiah, K., Kannan, K., Alqahtani, M. S., Abbas, M., Govindhan, M., & Gurushankar, K. (2024). Evaluating the antimicrobial and electrochemical performance of phenytoin nanoparticles from Catharanthus roseus plant. Chemical Physics Letters.

Selvam, P. P., Rathinam, V., Arunraj, A., Ali Baig, A. B., & Govindhan, M. (2023). Synthesis effect of Mg-doped ZnO nanoparticles for visible light photocatalysis. Ionics.

Nagaraj, G., Chinnaiah, K., Kannan, K., & Gurushankar, K. (2022). Nano-sized neem plant particles as an electrode for electrochemical storage applications. Ionics.

Ms. Abhishiktha Chiliveru | Renewable Energy and Fuel Cells | Best Researcher Award

Ms. Abhishiktha Chiliveru | Renewable Energy and Fuel Cells | Best Researcher Award

Ariel University | Israel

Ms. Abhishiktha Chiliveru is a Ph.D. scholar in the Department of Chemical Engineering, Biotechnology, and Materials at Ariel University, Israel, under the supervision of Professor Rivka Cahan. Her current research focuses on advancing sustainable bioenergy by studying nanoparticles-fed Geobacter sulfurreducens biofilms in microbial electrolysis cells (MEC) for enhanced hydrogen production. She previously worked as a Project Associate at CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, contributing to projects on lipid production from oleaginous yeast, microbial diversity in anaerobic digestion, and high-rate biomethanation of organic wastes for bioenergy generation. Abhishiktha earned her M.Sc. in Microbiology from Jawaharlal Nehru Technological University, Hyderabad, after completing a B.Sc. in Microbiology, Genetics, and Chemistry from Osmania University. Her strong academic foundation is complemented by hands-on expertise in microbial electrochemical systems, anaerobic digestion, microbial isolation, and advanced instrumentation techniques such as confocal microscopy, UV-VIS spectroscopy, and dynamic light scattering. She has actively participated in several international and national conferences, workshops, and symposiums, including the 5th MEEP Symposium in Switzerland. Her research interests span bioremediation, solid waste management, wastewater treatment, and bioenergy recovery, with a focus on applying microbial systems for environmental sustainability. Abhishiktha’s dedication to innovative microbial technologies reflects her commitment to advancing green energy solutions.

Author Profiles: Orcid | Google Scholar

Featured Publications

Hirsch, L.O., Gandu, B., Chiliveru, A., Dubrovin, I.A., Rozenfeld, S., Schechter, A., & Cahan, R. (2024). “The performance of a modified anode using a combination of kaolin and graphite nanoparticles in microbial fuel cells.” Microorganisms

Dubrovin, I.A., Hirsch, L.O., Chiliveru, A., Jukanti, A., Rozenfeld, S., Schechter, A., & Cahan, R. (2024). “Microbial electrolysis cells based on a bacterial anode encapsulated with a dialysis bag including graphite particles.” Microorganisms

Hirsch, L.O., Gandu, B., Chiliveru, A., Dubrovin, I.A., Jukanti, A., Schechter, A., & Cahan, R. (2024). “Hydrogen production in microbial electrolysis cells using an alginate hydrogel bioanode encapsulated with a filter bag.” Polymers

Vemparala, G., Chiliveru, A., Begum, S., Al Amri, M.B.F., & Anupoju, G.R. (2025). “Analyzing and optimizing the lipids production potential of the oleaginous yeast Candida neerlandica from synthetic carbon sources and real wastes.” Next Research

Juntupally, S., Begum, S., Chiliveru, A., Arelli, V., & Anupoju, G.R. (2022). “Relative evaluation of FeCl₃ salts and its nanoparticles on methane yield and sulphide inhibition control during biomethanation of distillery spent wash.” Journal of Water Process Engineering

Chiliveru, A., Yadav, M.K., Ebenezer, J., Jukanti, A., Bar Hanun, E., Borenstein, A., Schechter, A., & Cahan, R. (2025). “Current generation in microbial electrolysis cells based on an abiotic anode and planktonic G. sulfurreducens in the presence of suspended reduced graphene oxide and activated ….” Journal of Environmental Chemical Engineering

Bar-Hanun, E., Hanya, E., Chiliveru, A., & Cahan, R. (2025). “The influence of moderate electroporation on E. coli membrane permeability.” Microorganisms