Azim Khan | Metal Materials | Research Excellence Award

Assoc. Prof. Dr. Azim Khan | Metal Materials | Research Excellence Award

University of Electronic Science and Technology of China, China

Assoc. Prof. Dr. Azim Khan is a dedicated materials scientist whose academic and professional journey spans advanced research, university teaching, and extensive laboratory expertise across China and Pakistan. He holds an M.Sc. and M.Phil. in Physics with a specialization in solid-state materials, followed by a Ph.D. in Physics/Material Science and Engineering from the Institute of Metal Research, Chinese Academy of Sciences, where he investigated metal oxide dispersion effects on alumina phase transformation and oxidation performance of Ni₂Al₃ coatings. His postdoctoral work and subsequent faculty roles at Anhui University of Technology further strengthened his contributions to high-temperature oxidation, corrosion behavior, phase transformation of nickel-based superalloys, thermal spray coatings, and catalyst development. He has also served as a lecturer and currently works as an associate researcher at the Yangtze River Delta Research Institute, focusing on catalyst synthesis and CVD-based fabrication of carbon nanomaterials such as SWCNTs, MWCNTs, and carbon nanocoils. His research interests include nanostructured coatings, diffusion coatings, nano-composite materials, and high-entropy alloys. Recognized for his scientific excellence, he has received multiple honors, including a prestigious young scientist research fund and awards from IMR-CAS and leading material science laboratories. Dr. Khan continues to advance innovative materials for high-temperature and catalytic applications.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Azim Khan, Rostami, K., Sedighi, M., Khan, S., & Ghasemi, M. (2025). “A Comparative Electrochemical Study of Pt and Ni–Oxide Cathodes: Performance and Economic Viability for Scale-Up Microbial Fuel Cells.” Catalysts. https://doi.org/10.3390/catal15121153

Yu, T., Chen, Y., Fan, Y., Chen, G., Khan, A., Liu, Y., & Jian, X. (2025). “Environmental-friendly visible-light inducing bond change of fluorinated carbon in large-scale for ultrahigh-rate lithium/fluorinated carbon battery.” Journal of Power Sources. https://doi.org/10.1016/j.jpowsour.2025.236367

Chen, G., Fan, Y., Yu, T., Shoaib, M., Khan, A., Liu, Y., & Jian, X. (2024). “Efficient microwave induction to modify surface for high-rate lithium/fluorinated carbon battery with ultra-high power density.” Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2024.154899

Ullah, S., Gul, U., Tariq, S., Ullah, R., Rahman, N., Ali, E.A., Husain, M., Abbas, M., Ullah, H., & Khan, A. (2024). “First principal investigations to explore the half-metallicity, structural, mechanical, and optoelectronic properties of sodium-based fluoroperovskites NaYF₃ (Y = Sc and Ti) for applications in spintronics and optoelectronics.” Inorganic Chemistry Communications. https://doi.org/10.1016/j.inoche.2024.112369

Rehman, S.U., Sun, Q., Wang, J., Lv, W., Khan, A., Liu, Y., Mahmood, N., & Xian, J. (2024). “In-plane heterostructures of transition metal dichalcogenide monolayers with enhanced charge separation and effective overall water splitting.” International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2024.07.171

Shah, S.S.A., Liu, M., Khan, A., Ahmad, F., Abdullah, M.R., Zhang, X., Xu, S., & Peng, Z. (2024). “Twinning aspects and their efficient roles in wrought Mg alloys: A comprehensive review.” Journal of Magnesium and Alloys. https://doi.org/10.1016/j.jma.2024.04.035

Ullah, S., Gul, U., Tariq, S., Ullah, R., Rahman, N., Ali, E.A., Husain, M., Abbas, M., Ullah, H., & Khan, A. (2023). “First Principal Investigations to Explore the Half-Metallicity, Structural, Mechanical, and Optoelectronic Properties of Sodium-Based Fluoroperovskites NaYF₃ (Y = Sc and Ti) for Applications in Spintronics and Optoelectronics.” SSRN. https://doi.org/10.2139/ssrn.4668900

Dr. Arun Kumar S | Energy Storage Devices |Best Researcher Award

Dr. Arun Kumar S | Energy Storage Devices | Best Researcher Award

Kuppam Engineering College | India

Dr. Arun Kumar S is a dedicated physicist and academician with extensive experience in nanomaterials and energy storage applications. He completed his B.Sc. in Physics with First Class from Arignar Anna College, Krishnagiri, followed by an M.Sc. in Physics from Periyar University, Salem. He earned his Ph.D. in Physics from Periyar University under the supervision of Prof. Dr. P. M. Anbarasan, focusing on hybrid supercapacitors using binder-free metal oxide electrodes for energy storage. Dr. Arun Kumar has held positions as Assistant Professor and Associate Professor in Physics at Kuppam Engineering College, where he teaches Engineering Physics, Quantum Technologies, and related courses. He has also delivered lectures in Nanoscience, Nanotechnology, and Polymer Science at CIPET: SARP-LARPM. His research expertise spans the synthesis and characterization of nanomaterials, thin-film fabrication, and development of advanced functional materials for supercapacitor devices. He possesses hands-on experience with XRD, FTIR, UV-Vis spectroscopy, XPS, SEM, TEM, EDX, electrochemical workstations, electrospinning, and spin coating techniques. Dr. Arun Kumar’s work contributes to advancing energy-efficient technologies, with a strong focus on functional nanomaterials and polymer-based electrodes. His dedication to teaching, research, and innovation continues to inspire the next generation of scientists.

Profile: Google Scholar

Featured Publications

Gowdhaman, A., Arun Kumar, S., Elumalai, D., Balaji, C., Sabarinathan, M., Ramesh, R., & Navaneethan, M. (2023). “Ni-MOF derived NiO/Ni/r-GO nanocomposite as a novel electrode material for high-performance asymmetric supercapacitor” in Journal of Energy Storage.

Aswathy, N.R., Arun Kumar, S., Mohanty, S., Nayak, S.K., & Palai, A.K. (2021). “Polyaniline/multi-walled carbon nanotubes filled biopolymer based flexible substrate electrodes for supercapacitor applications” in Journal of Energy Storage.

Prabhu, S., Maruthapandi, M., Durairaj, A., Arun Kumar, S., Luong, J.H.T., Ramesh, R., & Gedanken, A. (2023). “Performances of Co²⁺-Substituted NiMoO₄ Nanorods in a Solid-State Hybrid Supercapacitor” in ACS Applied Energy Materials.

Arun Kumar, S., Mohanty, A., Saravanakumar, B., Mohanty, S., Nayak, S.K., & Ramadoss, A. (2020). “Three-dimensional Bi₂O₃/Ti microspheres as an advanced negative electrode for hybrid supercapacitors” in Chemical Communications.

Chettiannan, B., Mathan, S., Arumugam, G., Srinivasan, A., & Rajendran, R. (2024). “Attaining high energy density using metal-organic framework-derived NiO/Co₃O₄/NiCo₂O₄ as an electrode in asymmetric hybrid supercapacitor” in Journal of Energy Storage.

Chettiannan, B., Srinivasan, A.K., Arumugam, G., Shajahan, S., Abu Haija, M., & Rajendran, R. (2023). “Incorporation of α-MnO₂ Nanoflowers into Zinc-Terephthalate Metal–Organic Frameworks for High-Performance Asymmetric Supercapacitors” in ACS Omega.

Arun Kumar, S., Gowdhaman, A., Balaji, C., Ramesh, R., & Anbarasan, P.M. (2024). “Exploring the potential of two-dimensional NiCo₂O₄ sheets//BiPO₄ flakes as a hybrid supercapacitor device for energy storage application” in Colloids and Surfaces A: Physicochemical and Engineering Aspects.