Moganesh G | Green Extract Metal Oxide | Best Researcher Award

Dr. Moganesh G | Green Extract Metal Oxide | Best Researcher Award

Saveetha Engineering College | India

Dr. Moganesh G is a dedicated researcher and academician whose work spans physics, materials science, and nanotechnology, with a strong foundation built through advanced degrees including a Doctor of Philosophy in Physics from Sacred Heart College, Thiruvalluvar University. His research career began with contributions at DTR Research Foundation, followed by roles as Lecturer, Research Professor, Assistant Professor, and Director at various reputed institutions, and he currently serves as Research Faculty at Saveetha Engineering College. His expertise centers on nanomaterials synthesis, green synthesis approaches, photocatalysis, nuclear physics, solar cell device fabrication, and the development of energy-storage materials with emerging applications in anti-cancer and anti-diabetic studies. He has made notable scientific contributions, including the development of a Photon-Induced Method for material synthesis and innovative AC TIMER research highlighted in local media. Dr. Moganesh has been honoured with multiple recognitions, such as the Best Researcher Award at the 2nd International Research Awards on Science, Health and Engineering (2020) and the International Plant Scientist Award (2025). Through his extensive teaching, research leadership, and continuous innovation, he remains committed to advancing sustainable materials and interdisciplinary solutions that address scientific and societal challenges.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Govindhan, M., Selvaraj, S., & Sukumar, K. (2025). Fluorometric detection of CIP and bioimaging employing a fluorescent nanoprobe with blue emission using carbon quantum dots from papaya seeds (Carica papaya). Journal of Environmental Chemical Engineering.

Govindhan, M. (2025). Green synthesis of structural and bandgap engineering nickel oxide nanostructure for visible light photocatalyst. Catalysis Letters.

Tamilarasu, S., & Govindhan, M. (2025). Phase stability and band-gap engineering of pure TiO₂ for visible light photocatalyst via photon-induced method. Journal of Sol-Gel Science and Technology.

Govindhan, M. (2025). Structural and optical engineering of MgO–ZnO nanocomposite via photon-induced method. Ceramics International.

Sasikumar, P., Chinnaiah, K., Kannan, K., Alqahtani, M. S., Abbas, M., Govindhan, M., & Gurushankar, K. (2024). Evaluating the antimicrobial and electrochemical performance of phenytoin nanoparticles from Catharanthus roseus plant. Chemical Physics Letters.

Selvam, P. P., Rathinam, V., Arunraj, A., Ali Baig, A. B., & Govindhan, M. (2023). Synthesis effect of Mg-doped ZnO nanoparticles for visible light photocatalysis. Ionics.

Nagaraj, G., Chinnaiah, K., Kannan, K., & Gurushankar, K. (2022). Nano-sized neem plant particles as an electrode for electrochemical storage applications. Ionics.

Prof. Dr. Jonas Duarte | Carbon Allotropes | Materials Chemistry Advancement Award

Prof. Dr. Jonas Duarte | Carbon Allotropes | Materials Chemistry Advancement Award

Federal University Western Pará | Brazil

Prof. Dr. Jonas Duarte is a distinguished academic and researcher serving as a Professor at the Federal University of Western Pará. With a solid educational background in Physics and Electrical Engineering from the Federal University of Pará (UFPA), he has built a robust foundation in scientific inquiry and advanced technology. Throughout his career, he has gained extensive experience in cutting-edge nanotechnology research, contributing significantly to the fields of electronic transport, quantum materials, and condensed matter physics. His main research interests revolve around carbon allotropes, graphene-based nanodevices, and the detection of Majorana fermions in Kitaev chains using Green’s functions. Dr. Duarte applies ab initio calculations to simulate electronic properties of emerging two-dimensional materials, furthering the development of molecular nanoelectronics. A dedicated scholar, he has published his findings in several high-impact scientific journals and has been involved in various interdisciplinary research collaborations. His professional memberships at the Federal University of Western Pará and the Federal University of Pará demonstrate his continuous contribution to academia. Recognized for his efforts in pioneering computational and theoretical studies, he continues to lead innovations in nanoscience, shaping the future of carbon-based device technologies.

Profile: Orcid

Featured Publications

Cardoso, D.H., Miranda, I.R.S., Mota, E.A.V., Duarte, J.M., dos Santos da Silva, S.J., da Silva, C.A.B., & Del Nero, J. (2025). Numerical implementation of phagraphene as patch resonator for a microstrip antenna. Optical and Quantum Electronics.

Quaresma, L.C., Ferreira, D.F.S., Duarte, J.M., Moura-Moreira, M., da Silva, C.A.B., Jr., & Del Nero, J. (2025, November). Eigenchannel Visualization and Transition-Voltage Spectroscopy in Two-Dimensional C-57 Allotrope. Computational Condensed Matter.

Quaresma, L.C., Duarte, J.M., Ferreira, D.F.S., da Silva, C.A.B., Jr., & Del Nero, J. (2025, October). Electronic transport modulation in C-57: A path toward carbon-based logic and switching devices. Physica E: Low-dimensional Systems and Nanostructures.

Duarte, J.M., Santos, J.C.S., Ferreira, D.F.S., Paula, M.V.S., Mota, E.A.V., da Silva, C.A.B., & Del Nero, J. (2025, March). Systematic investigation of a metallic quadrilateral nanoribbon graphene allotrope for application in nanoelectronics. Computational Condensed Matter.

Duarte, J.M. (2024, November 1). Metodologias ativas e educação ambiental: uma revisão integrativa sobre abordagens inovadoras para o ensino de energia solar. Ensino e Tecnologia em Revista.

Mr. T. T. Khaleelul Rahman | Biopolymer Nanocomposites | Best Researcher Award

Mr. T. T. Khaleelul Rahman | Biopolymer Nanocomposites | Best Researcher Award

University of Calicut | India

Mr. T. T. Khaleelul Rahman is an emerging researcher in the field of Physics, with a strong academic foundation and a growing passion for scientific innovation. He is currently pursuing an Integrated M.Sc. in Physics at the University of Calicut, Kerala, where his academic excellence is reflected in a remarkable GPA of 94.5%. His coursework spans a wide range of subjects including Mathematical Physics, Quantum Mechanics, Computational Physics, and Nanoscience, complemented by specialized study in nanomaterials for energy production and storage. His research interests focus on Material Science, Computational Physics, Nanoscience, Energy Storage Technology, and Electronics. He has gained valuable research experience through an internship at the Centre for Polymeric Science and Technology under the mentorship of Prof. M. T. Ramesan, where he contributed to studies on polymeric nanocomposites. His earlier project explored optoelectrical enhancements in polyvinyl formal through nanocurcumin reinforcement. Beyond academics, he has demonstrated leadership as an academic volunteer in programs such as NSS and Saasthrayan and has worked as a freelance physics educator for competitive exams. His academic distinction has earned him several recognitions including the Prof. Joseph Mundassery Scholarship and the P. Shehan Endowment Award. Rahman continues to pursue excellence with a vision to advance materials and energy research.

Profiles: Scopus | Orcid

Featured Publications

Najmu Shabah, N., Khaleelul Rahman, T. T., Gopika, R., & Ramesan, M. T. (2025, July 7). Multifunctional polyvinyl alcohol / maranta arundinacea starch / LiAgO nanocomposites: A sustainable approach for antibacterial and optoelectronic applications. Journal of Thermoplastic Composite Materials.

Ramesan, M. T., Gopika, R., Khaleelul Rahman, T. T., Jamsheena, K. T., & Bahuleyan, B. K. (2025, April). Impact of nanocurcumin on mechanical, optical and electrical properties of chitosan/polyvinyl alcohol blend nanocomposites for sustainable applications. International Journal of Biological Macromolecules.

Dr. Clarimma Sessa | Heritage Science | Best Researcher Award

Dr. Clarimma Sessa | Heritage Science | Best Researcher Award

TUM | Germany

Dr. Clarimma Sessa is a distinguished conservation scientist specializing in material science and cultural heritage preservation. She is currently pursuing her Habilitation (Venia legendi) in Material Science at the Technical University of Munich (TUM), where her thesis focuses on advancing non-destructive multimodal analytical tools for in-situ cultural heritage studies. She holds a Ph.D. in Analytical Chemistry from the University of Barcelona, where her research pioneered specific analytical methodologies for the study of artworks, following a master’s in Advanced Chemistry and dual degrees in Conservation and Restoration of Cultural Heritage from the University of Perugia. Professionally, Dr. Sessa serves as Head of the insiTUMlab at TUM and Senior Conservation Scientist in the Department of Architecture, with previous experience at the Doerner Institut, Bayerische Staatsgemäldesammlungen, Munich, and international collaborations including The Metropolitan Museum of Art, New York. Her expertise spans pigments analysis, cultural heritage diagnostics, advanced spectroscopy, and the development of practical conservation protocols. Recognized with prestigious awards, including the Alexander von Humboldt Postdoctoral Research Fellowship, she has contributed significantly to bridging analytical chemistry with heritage science. Through leadership, teaching, and research, Dr. Sessa advances innovative methodologies that strengthen the preservation, study, and appreciation of cultural heritage worldwide.

Author Profile: Orcid

Featured Publications

Wu, Y., Angelin, E.M., Danzl, T., Park, S., & Sessa, C. (2025). Towards the Understanding of Keim’sche Mineralfarben in Architectural Paints: Material Characterization and Phase Quantification on selected Historical Pigment Admixtures. Dyes and Pigments.

Pungercar, V., Wu, Y., Sessa, C., & Kränkel, T. (2025). Investigating efflorescence in salt-cement composites: The impact of surface inclination and salt waste types on resource-efficient construction materials. Case Studies in Construction Materials.

Sessa, C., Angelin, E.M., Jürgens, M., Roldão, É., Kemp, C., & Pamplona, M. (2023). Carl August Steinheil’s pioneering daguerreotypes: Nondestructive investigation of his production and processing methods. Conference paper.

Neugebauer, W., Sessa, C., Steuer, C., Allscher, T., & Stege, H. (2019). Naphthol Green – a forgotten artists’ pigment of the early 20th century. History, chemistry and analytical identification. Journal of Cultural Heritage.

Sessa, C., Weiss, R., Niessner, R., Ivleva, N.P., & Stege, H. (2018). Towards a Surface Enhanced Raman Scattering (SERS) spectra database for synthetic organic colourants in cultural heritage. The effect of using different metal substrates on the spectra. Microchemical Journal.

Sessa, C., Bagán, H., Romero, M.T., & García, J.F. (2017). Effects of variability sources on analysis of the composition of large ancient metal objects. Microchemical Journal.

Sessa, C., Jiménez de Garnica, R., Rosi, F., Fontana, R., & García, J.F. (2016). A Study of Picasso’s Painting Materials and Techniques in Six of His Early Portraits. Journal of the American Institute for Conservation.