Azim Khan | Metal Materials | Research Excellence Award

Assoc. Prof. Dr. Azim Khan | Metal Materials | Research Excellence Award

University of Electronic Science and Technology of China, China

Assoc. Prof. Dr. Azim Khan is a dedicated materials scientist whose academic and professional journey spans advanced research, university teaching, and extensive laboratory expertise across China and Pakistan. He holds an M.Sc. and M.Phil. in Physics with a specialization in solid-state materials, followed by a Ph.D. in Physics/Material Science and Engineering from the Institute of Metal Research, Chinese Academy of Sciences, where he investigated metal oxide dispersion effects on alumina phase transformation and oxidation performance of Ni₂Al₃ coatings. His postdoctoral work and subsequent faculty roles at Anhui University of Technology further strengthened his contributions to high-temperature oxidation, corrosion behavior, phase transformation of nickel-based superalloys, thermal spray coatings, and catalyst development. He has also served as a lecturer and currently works as an associate researcher at the Yangtze River Delta Research Institute, focusing on catalyst synthesis and CVD-based fabrication of carbon nanomaterials such as SWCNTs, MWCNTs, and carbon nanocoils. His research interests include nanostructured coatings, diffusion coatings, nano-composite materials, and high-entropy alloys. Recognized for his scientific excellence, he has received multiple honors, including a prestigious young scientist research fund and awards from IMR-CAS and leading material science laboratories. Dr. Khan continues to advance innovative materials for high-temperature and catalytic applications.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Azim Khan, Rostami, K., Sedighi, M., Khan, S., & Ghasemi, M. (2025). “A Comparative Electrochemical Study of Pt and Ni–Oxide Cathodes: Performance and Economic Viability for Scale-Up Microbial Fuel Cells.” Catalysts. https://doi.org/10.3390/catal15121153

Yu, T., Chen, Y., Fan, Y., Chen, G., Khan, A., Liu, Y., & Jian, X. (2025). “Environmental-friendly visible-light inducing bond change of fluorinated carbon in large-scale for ultrahigh-rate lithium/fluorinated carbon battery.” Journal of Power Sources. https://doi.org/10.1016/j.jpowsour.2025.236367

Chen, G., Fan, Y., Yu, T., Shoaib, M., Khan, A., Liu, Y., & Jian, X. (2024). “Efficient microwave induction to modify surface for high-rate lithium/fluorinated carbon battery with ultra-high power density.” Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2024.154899

Ullah, S., Gul, U., Tariq, S., Ullah, R., Rahman, N., Ali, E.A., Husain, M., Abbas, M., Ullah, H., & Khan, A. (2024). “First principal investigations to explore the half-metallicity, structural, mechanical, and optoelectronic properties of sodium-based fluoroperovskites NaYF₃ (Y = Sc and Ti) for applications in spintronics and optoelectronics.” Inorganic Chemistry Communications. https://doi.org/10.1016/j.inoche.2024.112369

Rehman, S.U., Sun, Q., Wang, J., Lv, W., Khan, A., Liu, Y., Mahmood, N., & Xian, J. (2024). “In-plane heterostructures of transition metal dichalcogenide monolayers with enhanced charge separation and effective overall water splitting.” International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2024.07.171

Shah, S.S.A., Liu, M., Khan, A., Ahmad, F., Abdullah, M.R., Zhang, X., Xu, S., & Peng, Z. (2024). “Twinning aspects and their efficient roles in wrought Mg alloys: A comprehensive review.” Journal of Magnesium and Alloys. https://doi.org/10.1016/j.jma.2024.04.035

Ullah, S., Gul, U., Tariq, S., Ullah, R., Rahman, N., Ali, E.A., Husain, M., Abbas, M., Ullah, H., & Khan, A. (2023). “First Principal Investigations to Explore the Half-Metallicity, Structural, Mechanical, and Optoelectronic Properties of Sodium-Based Fluoroperovskites NaYF₃ (Y = Sc and Ti) for Applications in Spintronics and Optoelectronics.” SSRN. https://doi.org/10.2139/ssrn.4668900

Santosh Chackrabarti | Thick Films | Research Excellence Award

Dr. Santosh Chackrabarti | Thick Films | Research Excellence Award

Jamia Millia Islamia | India

Dr. Santosh Chackrabarti is a dedicated researcher in nanophotonics and materials science, recognized for his contributions to semiconductor lasers, nanostructured thin films, and advanced 2D and metal oxide materials. With a strong academic foundation including a Ph.D. in Material Science and Lasers, an M.Sc. in Physics, and a B.Sc. in Physics, he has developed expertise across optical, electrical, and structural characterization techniques such as SEM, XRD, FTIR, UV-Vis, and photoluminescence analysis. His professional journey spans impactful roles as a freelance researcher, research associate, guest lecturer, and physics educator at undergraduate and postgraduate levels, demonstrating proficiency in both scientific innovation and academic instruction. He has authored more than seventeen peer-reviewed journal publications, review articles, and book chapters, along with presenting at international conferences. His research interests include semiconductor thin films, nanostructured oxides, optoelectronic materials, quantum wells, and laser-material interactions, with additional involvement in photocatalytic nanomaterials for energy and environmental applications. His work on metal oxide nanocomposites has been supported by competitive research grants, reflecting recognition of his scientific capabilities. Dr. Chackrabarti continues to advance interdisciplinary research while inspiring emerging scholars through mentorship and high-quality teaching.

Profile: Scopus

Featured Publications

An in-depth Analysis of the Physical Characteristics of TiO2–CuO Films Fabricated via Spray Pyrolysis

Journal: Semiconductors

Year: 2024

Dr. Mohammad Barati | Modeling | Best Researcher Award

Dr. Mohammad Barati | Modeling | Best Researcher Award

University of Kashan | Iran

Dr. Mohammad Barati is an accomplished researcher and assistant professor in applied chemistry at the University of Kashan. He earned his Ph.D. in Applied Chemistry from the University of Tehran, following an M.Sc. and B.Sc. in Applied Chemistry from the University of Tabriz. Dr. Barati has extensive research experience in renewable energy and nanotechnology, focusing on the conversion of microalgae into biodiesel and bio-jet fuel using supercritical media, simultaneous bio-diesel and hydrogen production, and the development of polymer nanocomposites for drug delivery and bio-applications. His work also encompasses the synthesis and performance evaluation of magnetic polymer nanocomposites and their use as scaffolds in cell culture. Recognized for his excellence in teaching, he has been ranked first in annual faculty teaching evaluations at the University of Kashan and has received awards including the provincial first prize for university startups and the second-rank award at the Sabzkooh National Technology Festival. Dr. Barati’s research contributes significantly to sustainable energy, biofuel production, and advanced polymer materials, reflecting his dedication to both scientific innovation and academic excellence.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Fanaee, G., Barati, M., & Bashiri, H. (2026). “Process optimization, kinetics, thermodynamics and kinetic Monte Carlo modeling of catalyzed biodiesel production in supercritical medium” in Renewable Energy.

Aghilinategh, M., Barati, M., & Hamadanian, M. (2024). “Supercritical microalgae conversion to biofuel and value‐added components (oxygenates, hydrocarbons, and aromatics): A catalyst characterization study” in Environmental Progress & Sustainable Energy.

Alirezaei Alavije, A., Barati, F., Barati, M., Nazari, H., & Karimi, I. (2021). “Polyethersulfone/MWCNT nanocomposite scaffold for endometrial cell culture: preparation, characterization, and in vitro investigation” in Biomedical Physics & Engineering Express.

Barati, M. (2019). “Nanobiocatalytic processes for producing biodiesel from algae” in Sustainable Bioenergy (Book chapter).

Alirezaie Alavijeh, A., Barati, M., Barati, M., & Abbasi Dehkordi, H. (2019). “The potential of magnetic nanoparticles for diagnosis and treatment of cancer based on body magnetic field and organ-on-the-chip” in Advanced Pharmaceutical Bulletin.

Mirzaie, Z., Reisi-Vanani, A., & Barati, M. (2019). “Polyvinyl alcohol-sodium alginate blend, composited with 3D-graphene oxide as a controlled release system for curcumin” in Journal of Drug Delivery Science and Technology.