Opeyemi Akanbi | Electroanalytical Methods | Research Excellence Award

Mr. Opeyemi Akanbi | Electroanalytical Methods | Research Excellence Award

 University of Massachusetts Lowell | United States

Mr. Opeyemi Akanbi is a dedicated PhD Candidate in Physics and Applied Physics at the University of Massachusetts Lowell, where he focuses on advanced research at the intersection of materials science, transport phenomena, and functional textile engineering. With academic training that spans physics, materials science, and applied engineering, he has gained diverse experience working on optical strain sensors, humidity-control textiles, electrokinetic systems, and functional polymers. His current research centers on the design and optimization of low-power electroosmotic pumps and textile-integrated microfluidic platforms aimed at improving moisture and sweat management in wearable technologies. Combining experimental device fabrication with multiphysics modeling of ion transport, fluid flow, and heat transfer, he advances innovative solutions for smart garments, personal comfort enhancement, and healthcare monitoring applications. His work reflects strong interests in electroosmotic flow, soft-material transport behavior, photonics, and the integration of microfluidic architectures into flexible substrates. As an active member of leading scientific communities such as ACS, MRS, and IEEE, he consistently engages in interdisciplinary research and academic collaboration. He has contributed to impactful research outputs and received recognition for innovation in functional textile development. He aims to continue developing science-driven technologies that bridge physics, materials engineering, and wearable device innovation.

Profiles: Orcid | Google Scholar

Featured Publications

Hutchins, A., Acharya, S., Akanbi, O., Doan, K., Pinninti, P., Isherwood, K., Rosenberg, Z., Filocamo, S., Zhang, Y., & Guo, W. (2025). “Low Power Textile Integrated Electroosmosis Pump for Active Moisture and Sweat Management.” iScience.

Akanbi, O.S., Shannon, J.P., Delhommelle, J., & Desgranges, C. (2025). “Synergizing Driven Quantum Dynamics, AI, and Quantum Computing for Next-Gen Materials Science.” The Journal of Physical Chemistry Letters.

Hutchins, A., Reens, D., Kharas, D., West, G.N., Sorace-Agaskar, C., Chiaverini, J., McConnell, R., Swint, R., Akanbi, O., Harding, S., et al. (2024). “Fiber-to-Chip Packaging With Robust Fiber Fusion Splicing for Low-Temperature Applications.” IEEE Photonics Technology Letters.

Balogun, S.W., Oyeshola, H.O., Ajani, A.S., James, O.O., Awodele, M.K., Adewumi, H.K., Àlàgbé, G.A., Olabisi, O., Akanbi, O.S., Ojeniyi, F.A., et al. (2024). “Synthesis, characterization, and optoelectronic properties of zinc oxide nanoparticles: A precursor as electron transport layer.” Heliyon.

Akanbi, O.S., Usman, H.A., Abass, G.F., Oni, K.E., Ige, A.S., Odunaro, B.P., Ojo, I.J., Oladejo, J.A., Ajani, H.O., Musa, A., et al. (2023). “The Advent of Wide Bandgap Green-Synthesized Copper Zinc Tin Sulfide Nanoparticles for Applications in Optical and Electronic Devices.” Journal of Materials Science and Chemical Engineering.

Rimamnya, N.D., Akanbi, O.S., Bunmi, D.C., Abass, G.F., Olaniyan, J.A., Ige, A.S., Moyofoluwa, O.O., Kolawole, B.T., et al. (2023). “Evolution of Carbon Nanotubes, Their Methods, and Application as Reinforcements in Polymer Nanocomposites: A Review.” Journal of Advanced Mechanical Engineering Applications.

Akanbi, O., Abass, G., Ige, A., Nyatse, D., Oyeshola, H., Abba, H., Felix, O., Oni, K., Ayotunde, A., Ajao, J., et al. (2023). “Research Advances on 2D Mxenes for Photovoltaic Applications.” Journal of Advanced Mechanical Engineering Applications.

Dr. Arun Kumar S | Energy Storage Devices |Best Researcher Award

Dr. Arun Kumar S | Energy Storage Devices | Best Researcher Award

Kuppam Engineering College | India

Dr. Arun Kumar S is a dedicated physicist and academician with extensive experience in nanomaterials and energy storage applications. He completed his B.Sc. in Physics with First Class from Arignar Anna College, Krishnagiri, followed by an M.Sc. in Physics from Periyar University, Salem. He earned his Ph.D. in Physics from Periyar University under the supervision of Prof. Dr. P. M. Anbarasan, focusing on hybrid supercapacitors using binder-free metal oxide electrodes for energy storage. Dr. Arun Kumar has held positions as Assistant Professor and Associate Professor in Physics at Kuppam Engineering College, where he teaches Engineering Physics, Quantum Technologies, and related courses. He has also delivered lectures in Nanoscience, Nanotechnology, and Polymer Science at CIPET: SARP-LARPM. His research expertise spans the synthesis and characterization of nanomaterials, thin-film fabrication, and development of advanced functional materials for supercapacitor devices. He possesses hands-on experience with XRD, FTIR, UV-Vis spectroscopy, XPS, SEM, TEM, EDX, electrochemical workstations, electrospinning, and spin coating techniques. Dr. Arun Kumar’s work contributes to advancing energy-efficient technologies, with a strong focus on functional nanomaterials and polymer-based electrodes. His dedication to teaching, research, and innovation continues to inspire the next generation of scientists.

Profile: Google Scholar

Featured Publications

Gowdhaman, A., Arun Kumar, S., Elumalai, D., Balaji, C., Sabarinathan, M., Ramesh, R., & Navaneethan, M. (2023). “Ni-MOF derived NiO/Ni/r-GO nanocomposite as a novel electrode material for high-performance asymmetric supercapacitor” in Journal of Energy Storage.

Aswathy, N.R., Arun Kumar, S., Mohanty, S., Nayak, S.K., & Palai, A.K. (2021). “Polyaniline/multi-walled carbon nanotubes filled biopolymer based flexible substrate electrodes for supercapacitor applications” in Journal of Energy Storage.

Prabhu, S., Maruthapandi, M., Durairaj, A., Arun Kumar, S., Luong, J.H.T., Ramesh, R., & Gedanken, A. (2023). “Performances of Co²⁺-Substituted NiMoO₄ Nanorods in a Solid-State Hybrid Supercapacitor” in ACS Applied Energy Materials.

Arun Kumar, S., Mohanty, A., Saravanakumar, B., Mohanty, S., Nayak, S.K., & Ramadoss, A. (2020). “Three-dimensional Bi₂O₃/Ti microspheres as an advanced negative electrode for hybrid supercapacitors” in Chemical Communications.

Chettiannan, B., Mathan, S., Arumugam, G., Srinivasan, A., & Rajendran, R. (2024). “Attaining high energy density using metal-organic framework-derived NiO/Co₃O₄/NiCo₂O₄ as an electrode in asymmetric hybrid supercapacitor” in Journal of Energy Storage.

Chettiannan, B., Srinivasan, A.K., Arumugam, G., Shajahan, S., Abu Haija, M., & Rajendran, R. (2023). “Incorporation of α-MnO₂ Nanoflowers into Zinc-Terephthalate Metal–Organic Frameworks for High-Performance Asymmetric Supercapacitors” in ACS Omega.

Arun Kumar, S., Gowdhaman, A., Balaji, C., Ramesh, R., & Anbarasan, P.M. (2024). “Exploring the potential of two-dimensional NiCo₂O₄ sheets//BiPO₄ flakes as a hybrid supercapacitor device for energy storage application” in Colloids and Surfaces A: Physicochemical and Engineering Aspects.

Dr. Sharon Kiprotich | Physics | Best Researcher Award

Dr. Sharon Kiprotich | Physics | Best Researcher Award

Murang’a University of Technology | Kenya

Dr. Sharon Kiprotich is an accomplished physicist and materials scientist whose academic and professional journey exemplifies excellence in experimental and applied physics. She earned her Ph.D. and M.Sc. in Physics from the University of the Free State, South Africa, graduating with distinction, after completing her B.Sc. (Hons.) in Physics at the same institution and a B.Ed. (Science) in Physics and Mathematics from Kenyatta University, Kenya. Currently serving as a Senior Lecturer in Physics at Murang’a University of Technology, she has also held roles as Lecturer, Research Assistant, and Secondary School Educator, contributing extensively to academic instruction, mentorship, and research. Her administrative responsibilities include serving as Department Chair, Program Coordinator for postgraduate studies, and member of multiple academic committees. Dr. Kiprotich’s research interests span condensed matter physics, material sciences, experimental spectroscopy, semiconductor characterization, thin film technology, and nanomaterial fabrication. She is an active member of professional bodies such as the Materials Research Society, African Materials Research Society, and the Physical Society of Kenya. Recognized for her scholarly contributions and leadership, Dr. Kiprotich continues to advance research in emerging materials and technologies, fostering scientific innovation and education across Africa’s growing research landscape.

Profiles: Orcid | Google Scholar

Featured Publications

Bethwel Kiprotich, Peter Waithaka, Sylvia Opiyo, & Sharon Kiprotich. (2025). Green Synthesis of Ga-Doped SnO₂ Nanoparticles: Effects of Ga Doping Concentrations on the Structural and Optical Properties. Journal of Photonic Materials and Technology.

Simon Waweru Gakuru, Sharon Kiprotich, Peter Waithaka, & Francis B. Dejene. (2025). Synergetic Effects of Zn:Fe-Codoped TiO₂ Nanoparticles on the Structural, Optical, and Morphological Properties. physica status solidi (a).

Nancy Kiprotich, Peter Waithaka, Sharon Kiprotich, & John Njagi. (2025). Effects of Tin Doping Concentration on the Structural and Optical Properties of Cadmium Oxide Nanoparticles. Advances in Materials.

Joan Jepngetich, Peter W. Njoroge, Sylvia Opiyo, & Sharon Kiprotich. (2025). Synthesis and Characterization of Ag-ZnO Using Citrus reticulata Peel Extract. Materials Research Express.

Samuel Ndungu Waithira, Ali Halake Wako, Simba Nyamato, & Sharon Kiprotich. (2024). Effects of Synthesis Temperature on the Structural and Optical Properties of CaAl₂O₄:Eu²⁺,Dy³⁺ Nanoparticles. Scientific African.

Simon Gakuru, Sharon Kiprotich, & Peter Waithaka. (2024). Structural and Optical Properties of Fe-Doped TiO₂ Nanoparticles: Investigation of Effects of Different Doping Concentrations. Advances in Materials.

Anati N. Nkaule, Sharon Kiprotich, Leandre B. Brandt, Thomas Gerber, Abram M. Madiehe, Nandipha L. Botha, & Martin O. Onani. (2023). Effects of Reaction Temperature and Cadmium Source on the Optical, Morphological, and Cytotoxic Properties of CdSe/ZnSe Quantum Dots. ChemistrySelect.