Qi Sun | Membrane Materials | Best Researcher Award

Prof. Qi Sun | Membrane Materials | Best Researcher Award

Zhejiang University | China

Prof. Qi Sun is a distinguished chemist and academic leader recognized for impactful contributions to chemical and biochemical engineering, particularly in materials chemistry and catalysis. He earned his PhD in Chemistry from Zhejiang University (2009–2014) under the mentorship of Feng-Shou Xiao, following a Bachelor’s degree in Material Chemistry from Harbin University of Science and Technology (2005–2009). After completing doctoral training, he gained extensive international research experience as a Postdoctoral Research Associate in the Department of Materials Science and Engineering at Zhejiang University, supervised by Jixue Li and Feng-Shou Xiao, and subsequently in the Department of Chemistry at the University of South Florida under Shengqian Ma. These roles strengthened his expertise in advanced functional materials, porous materials, catalysis, and structure–property relationships. He currently serves as Professor at the College of Chemical and Biochemical Engineering, Zhejiang University, where he leads innovative research integrating chemistry, materials science, and engineering applications. His academic excellence has been recognized through multiple prestigious honors, including Outstanding Doctoral Thesis at Zhejiang University, National Scholarship and Outstanding Graduate Student awards, and Outstanding Undergraduate Graduation Thesis distinction. Through sustained research innovation, mentorship, and scholarly leadership, Prof. Qi Sun continues to advance chemical science and foster the next generation of researchers.


View ORCID ProfileView Google Scholar Profile

Featured Publications

Zhongmin Zhou | Solar Cells | Research Excellence Award

Prof. Zhongmin Zhou | Solar Cells | Research Excellence Award

Qingdao University of Science and Technology | China

Prof. Zhongmin Zhou is a Professor at Qingdao University of Science and Technology and a leading researcher in the field of new energy materials, with a strong focus on high-performance perovskite solar cells. He received his Bachelor’s, Master’s, and Doctoral degrees from Qingdao University of Science and Technology and the Institute of Chemistry, Chinese Academy of Sciences, respectively, building a solid foundation in materials chemistry and device physics. Following his doctorate, he undertook postdoctoral research at the Qingdao Institute of Bioenergy and Bioprocess Technology (CAS), the National Institute for Materials Science, and The University of Tokyo, gaining extensive international research experience in advanced functional materials. Since joining Qingdao University of Science and Technology, he has been actively engaged in molecular design and device engineering to enhance the efficiency, stability, and scalability of perovskite photovoltaic devices. His research outcomes have been widely recognized through publications in top-tier journals such as Nature Photonics, Nature Communications, JACS, Angewandte Chemie, and Advanced Materials, accumulating over 5,000 citations. He has received multiple academic honors and competitive research awards for his innovative contributions. Overall, Prof. Zhou’s work significantly advances next-generation solar energy technologies and supports the global transition toward sustainable energy solutions.

Profile: Scopus

Featured Publications

Ion-Mediated Self-Healing Strategy Enabling Efficient and Stable ETL-Free Perovskite Solar Cells
Angewandte Chemie International Edition, 2025
Additive Engineering Toward Suppression of Sn2+ Oxidation in Sn–Pb Perovskite Solar Cells: Mechanisms, Advances, and Outlook
– Review Article, 2025
Ion-Migration-Induced Dual Interface Dipoles for High-Performance Perovskite Solar Cells
Matter, 2025
Competitive-Coordination-Induced Crystallization Regulation for Efficient and Stable Sn–Pb Perovskite Solar Cells
Angewandte Chemie International Edition, 2025
Substituent Adjustment Strategy on Modifying Perovskite/Spiro-OMeTAD Interface in Perovskite Solar Cells
Chemical Engineering Journal, 2025

Azim Khan | Metal Materials | Research Excellence Award

Assoc. Prof. Dr. Azim Khan | Metal Materials | Research Excellence Award

University of Electronic Science and Technology of China, China

Assoc. Prof. Dr. Azim Khan is a dedicated materials scientist whose academic and professional journey spans advanced research, university teaching, and extensive laboratory expertise across China and Pakistan. He holds an M.Sc. and M.Phil. in Physics with a specialization in solid-state materials, followed by a Ph.D. in Physics/Material Science and Engineering from the Institute of Metal Research, Chinese Academy of Sciences, where he investigated metal oxide dispersion effects on alumina phase transformation and oxidation performance of Ni₂Al₃ coatings. His postdoctoral work and subsequent faculty roles at Anhui University of Technology further strengthened his contributions to high-temperature oxidation, corrosion behavior, phase transformation of nickel-based superalloys, thermal spray coatings, and catalyst development. He has also served as a lecturer and currently works as an associate researcher at the Yangtze River Delta Research Institute, focusing on catalyst synthesis and CVD-based fabrication of carbon nanomaterials such as SWCNTs, MWCNTs, and carbon nanocoils. His research interests include nanostructured coatings, diffusion coatings, nano-composite materials, and high-entropy alloys. Recognized for his scientific excellence, he has received multiple honors, including a prestigious young scientist research fund and awards from IMR-CAS and leading material science laboratories. Dr. Khan continues to advance innovative materials for high-temperature and catalytic applications.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Azim Khan, Rostami, K., Sedighi, M., Khan, S., & Ghasemi, M. (2025). “A Comparative Electrochemical Study of Pt and Ni–Oxide Cathodes: Performance and Economic Viability for Scale-Up Microbial Fuel Cells.” Catalysts. https://doi.org/10.3390/catal15121153

Yu, T., Chen, Y., Fan, Y., Chen, G., Khan, A., Liu, Y., & Jian, X. (2025). “Environmental-friendly visible-light inducing bond change of fluorinated carbon in large-scale for ultrahigh-rate lithium/fluorinated carbon battery.” Journal of Power Sources. https://doi.org/10.1016/j.jpowsour.2025.236367

Chen, G., Fan, Y., Yu, T., Shoaib, M., Khan, A., Liu, Y., & Jian, X. (2024). “Efficient microwave induction to modify surface for high-rate lithium/fluorinated carbon battery with ultra-high power density.” Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2024.154899

Ullah, S., Gul, U., Tariq, S., Ullah, R., Rahman, N., Ali, E.A., Husain, M., Abbas, M., Ullah, H., & Khan, A. (2024). “First principal investigations to explore the half-metallicity, structural, mechanical, and optoelectronic properties of sodium-based fluoroperovskites NaYF₃ (Y = Sc and Ti) for applications in spintronics and optoelectronics.” Inorganic Chemistry Communications. https://doi.org/10.1016/j.inoche.2024.112369

Rehman, S.U., Sun, Q., Wang, J., Lv, W., Khan, A., Liu, Y., Mahmood, N., & Xian, J. (2024). “In-plane heterostructures of transition metal dichalcogenide monolayers with enhanced charge separation and effective overall water splitting.” International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2024.07.171

Shah, S.S.A., Liu, M., Khan, A., Ahmad, F., Abdullah, M.R., Zhang, X., Xu, S., & Peng, Z. (2024). “Twinning aspects and their efficient roles in wrought Mg alloys: A comprehensive review.” Journal of Magnesium and Alloys. https://doi.org/10.1016/j.jma.2024.04.035

Ullah, S., Gul, U., Tariq, S., Ullah, R., Rahman, N., Ali, E.A., Husain, M., Abbas, M., Ullah, H., & Khan, A. (2023). “First Principal Investigations to Explore the Half-Metallicity, Structural, Mechanical, and Optoelectronic Properties of Sodium-Based Fluoroperovskites NaYF₃ (Y = Sc and Ti) for Applications in Spintronics and Optoelectronics.” SSRN. https://doi.org/10.2139/ssrn.4668900

Opeyemi Akanbi | Electroanalytical Methods | Research Excellence Award

Mr. Opeyemi Akanbi | Electroanalytical Methods | Research Excellence Award

 University of Massachusetts Lowell | United States

Mr. Opeyemi Akanbi is a dedicated PhD Candidate in Physics and Applied Physics at the University of Massachusetts Lowell, where he focuses on advanced research at the intersection of materials science, transport phenomena, and functional textile engineering. With academic training that spans physics, materials science, and applied engineering, he has gained diverse experience working on optical strain sensors, humidity-control textiles, electrokinetic systems, and functional polymers. His current research centers on the design and optimization of low-power electroosmotic pumps and textile-integrated microfluidic platforms aimed at improving moisture and sweat management in wearable technologies. Combining experimental device fabrication with multiphysics modeling of ion transport, fluid flow, and heat transfer, he advances innovative solutions for smart garments, personal comfort enhancement, and healthcare monitoring applications. His work reflects strong interests in electroosmotic flow, soft-material transport behavior, photonics, and the integration of microfluidic architectures into flexible substrates. As an active member of leading scientific communities such as ACS, MRS, and IEEE, he consistently engages in interdisciplinary research and academic collaboration. He has contributed to impactful research outputs and received recognition for innovation in functional textile development. He aims to continue developing science-driven technologies that bridge physics, materials engineering, and wearable device innovation.

Profiles: Orcid | Google Scholar

Featured Publications

Hutchins, A., Acharya, S., Akanbi, O., Doan, K., Pinninti, P., Isherwood, K., Rosenberg, Z., Filocamo, S., Zhang, Y., & Guo, W. (2025). “Low Power Textile Integrated Electroosmosis Pump for Active Moisture and Sweat Management.” iScience.

Akanbi, O.S., Shannon, J.P., Delhommelle, J., & Desgranges, C. (2025). “Synergizing Driven Quantum Dynamics, AI, and Quantum Computing for Next-Gen Materials Science.” The Journal of Physical Chemistry Letters.

Hutchins, A., Reens, D., Kharas, D., West, G.N., Sorace-Agaskar, C., Chiaverini, J., McConnell, R., Swint, R., Akanbi, O., Harding, S., et al. (2024). “Fiber-to-Chip Packaging With Robust Fiber Fusion Splicing for Low-Temperature Applications.” IEEE Photonics Technology Letters.

Balogun, S.W., Oyeshola, H.O., Ajani, A.S., James, O.O., Awodele, M.K., Adewumi, H.K., Àlàgbé, G.A., Olabisi, O., Akanbi, O.S., Ojeniyi, F.A., et al. (2024). “Synthesis, characterization, and optoelectronic properties of zinc oxide nanoparticles: A precursor as electron transport layer.” Heliyon.

Akanbi, O.S., Usman, H.A., Abass, G.F., Oni, K.E., Ige, A.S., Odunaro, B.P., Ojo, I.J., Oladejo, J.A., Ajani, H.O., Musa, A., et al. (2023). “The Advent of Wide Bandgap Green-Synthesized Copper Zinc Tin Sulfide Nanoparticles for Applications in Optical and Electronic Devices.” Journal of Materials Science and Chemical Engineering.

Rimamnya, N.D., Akanbi, O.S., Bunmi, D.C., Abass, G.F., Olaniyan, J.A., Ige, A.S., Moyofoluwa, O.O., Kolawole, B.T., et al. (2023). “Evolution of Carbon Nanotubes, Their Methods, and Application as Reinforcements in Polymer Nanocomposites: A Review.” Journal of Advanced Mechanical Engineering Applications.

Akanbi, O., Abass, G., Ige, A., Nyatse, D., Oyeshola, H., Abba, H., Felix, O., Oni, K., Ayotunde, A., Ajao, J., et al. (2023). “Research Advances on 2D Mxenes for Photovoltaic Applications.” Journal of Advanced Mechanical Engineering Applications.

Jinyuan Mao | Molecular Dynamics Simulations | Research Excellence Award

Dr. Jinyuan Mao | Molecular Dynamics Simulations | Research Excellence Award

BYD Auto Industry Company Ltd | China

Dr. Jinyuan Mao is a Senior Simulation Engineer whose work bridges computational materials science and advanced machine-learning methodologies to accelerate innovation in modern engineering materials. He earned his PhD in Soft Matter Science in 2024 from the South China University of Technology, where he received rigorous training in molecular modeling and multiscale simulation under expert mentorship. After completing his doctoral studies, he joined BYD Auto Industry Company Ltd. in collaboration with Fudan University, contributing to cutting-edge research that integrates atomic-scale simulations with data-driven modeling strategies. His professional experience spans the study of mechanical behavior in metals, composites, and soft matter, with an emphasis on understanding deformation mechanisms, reliability, and performance enhancement. Dr. Mao’s research interests include machine-learning-accelerated materials discovery, molecular dynamics simulations, mesoscale modeling, and the development of predictive frameworks for complex material systems. He has contributed to high-impact publications in computational materials science and has been recognized for scientific excellence through academic awards and research achievements during his doctoral years. Committed to advancing simulation-driven design, he continues to explore innovative computational approaches that bridge theory and application, supporting the development of next-generation materials for industrial and technological advancement.

Profiles: Orcid | Google Scholar

Featured Publications

Liu, J., Mao, J., Wang, B., Wang, Q., Zhang, N., & Pan, S. (2025). Study on the mechanical properties and critical temperature of FeNiCrMn alloy using MD-ML-MA framework. Journal of Molecular Modeling.

Mao, J., Zhou, J., & Liu, H. (2024). One-pot strategy for the preparation of nanoparticles grafted with bimodal polymers: An in-silico insight. Composites Science and Technology.

Mao, J., Jia, X.-M., Zhang, G., & Zhou, J. (2024). Excluded volume of slide rings in single-chain polyrotaxane. Macromolecules.

Li, C.-X., Mao, J.-Y., Li, S.-J., Wang, Y., & Liu, H. (2023). A long chain-induced depletion effect for abnormal grafting in the preparation of bimodal bidisperse polymer-grafted nanoparticles. Physical Chemistry Chemical Physics.

Mao, J., Hu, Z., Hu, J., Zhu, X., & Xiong, H. (2019). A Density Functional Theory (DFT) study of the acyl migration occurring during lipase-catalyzed transesterifications. International Journal of Molecular Sciences.

Santosh Chackrabarti | Thick Films | Research Excellence Award

Dr. Santosh Chackrabarti | Thick Films | Research Excellence Award

Jamia Millia Islamia | India

Dr. Santosh Chackrabarti is a dedicated researcher in nanophotonics and materials science, recognized for his contributions to semiconductor lasers, nanostructured thin films, and advanced 2D and metal oxide materials. With a strong academic foundation including a Ph.D. in Material Science and Lasers, an M.Sc. in Physics, and a B.Sc. in Physics, he has developed expertise across optical, electrical, and structural characterization techniques such as SEM, XRD, FTIR, UV-Vis, and photoluminescence analysis. His professional journey spans impactful roles as a freelance researcher, research associate, guest lecturer, and physics educator at undergraduate and postgraduate levels, demonstrating proficiency in both scientific innovation and academic instruction. He has authored more than seventeen peer-reviewed journal publications, review articles, and book chapters, along with presenting at international conferences. His research interests include semiconductor thin films, nanostructured oxides, optoelectronic materials, quantum wells, and laser-material interactions, with additional involvement in photocatalytic nanomaterials for energy and environmental applications. His work on metal oxide nanocomposites has been supported by competitive research grants, reflecting recognition of his scientific capabilities. Dr. Chackrabarti continues to advance interdisciplinary research while inspiring emerging scholars through mentorship and high-quality teaching.

Profile: Scopus

Featured Publications

An in-depth Analysis of the Physical Characteristics of TiO2–CuO Films Fabricated via Spray Pyrolysis

Journal: Semiconductors

Year: 2024

Huangjie Lu | Ion Detection | Young Researcher Award

Dr. Huangjie Lu | Ion Detection | Young Researcher Award

Changzhou University | China

Dr. Huangjie Lu is a dedicated researcher specializing in radiochemistry, actinide chemistry, coordination chemistry, radiation detection, and crystallographic separation. He holds a Ph.D. in Inorganic Chemistry from the University of Chinese Academy of Sciences, an M.Eng. in Materials Science and Engineering from Soochow University, and a B.Eng. in the same field from the Nanjing Institute of Technology. His professional experience includes serving as an Assistant Researcher at the Shanghai Institute of Applied Physics, Chinese Academy of Sciences, where he contributed extensively to advanced radiochemical and coordination compound studies, and he currently continues his academic journey at Changzhou University. Dr. Lu’s research explores the design, synthesis, and functional development of coordination compounds, inorganic complexes, and MOF-based materials, leading to more than 40 peer-reviewed publications, including over 24 first- or corresponding-author papers in top-tier journals such as JACS, Nature Communications, Advanced Science, and ACS Sensors. He has also secured nine granted patents demonstrating his innovative contributions to chemical sciences. Recognized for his impactful research and scientific leadership, Dr. Lu continues to advance the frontiers of inorganic and radiochemistry, contributing significantly to material innovation and radiochemical applications.

Profiles: Scopus | Orcid

Featured Publications

Gu, Q., Lei, J., Deng, W., Zhang, H., Zhang, Z.-H., Lu, H., Hu, B., & Xie, J. (2025). “A uranyl-based luminescent dosimeter for ultralow-dose tracking of UV and X-ray radiation” in Chemical Communications.

Cheng, S., Xu, T., Qian, J., Lu, H., Zhang, Z.-H., He, M.-Y., & Chen, Q. (2025). “Adsorption of radioiodine species by a microporous rare-earth-organic framework” in Inorganic Chemistry.

Yang, J., Bai, Y., Lu, H., Ma, J., Xie, J., Qiu, J., Guo, X., Wang, Y., Wang, S., & Lin, J. (2025). “Emergence of acidity modulation as a new strategy for eliciting stable radicals in multi-stimuli-responsive metal-oxo clusters” in Chinese Chemical Letters.

Bai, Y., Yang, J., Yang, L., Lu, H., Ma, J., Qiu, J., Wang, Y., & Lin, J. (2025). “Identical metal–organic frameworks with distinct colors: the role of modulator in directing photophysical properties” in ACS Materials Letters.

Bai, Y., Lu, H., Lei, M., Qiu, J., & Lin, J. (2025). “An ultrastable luminescent covalent organic polymer for selective Pd²⁺ detection in strong acid” in EcoEnergy.

Yin, X., Wang, Y., Li, Y., Jia, X., Sun, J., Lu, H., & Li, Q. (2025). “Selective crystallization separation driven by structural divergence in lanthanide mixed-organic systems” in Inorganic Chemistry.

Yang, J., Lu, H., Yang, L., Yao, Y., Wei, Z., Chen, M., Qi, H., Ren, Y., Wang, Y., Qiu, J., et al. (2024). “Lanthanide organic–inorganic hybrids for X-ray scintillation and imaging” in Inorganic Chemistry.

Jean-Manuel Raimundo | Materials Science | Best Researcher Award

Prof. Dr. Jean-Manuel Raimundo | Materials Science | Best Researcher Award

Aix Marseille Univ, CINaM | France

Prof. Dr. Jean-Manuel Raimundo is an accomplished scientist in organic chemistry and nanoscience, recognized for his contributions to molecular materials, functional chromophores, and advanced nanostructured systems. He holds a Bachelor’s degree in Biochemistry, a Master’s degree in Chemistry, a PhD in Organic Chemistry, and a Habilitation à Diriger des Recherches, establishing a strong academic foundation for his multidisciplinary research. His professional journey includes roles as temporary lecturer, assistant professor, associate professor, professor, and full professor at leading French universities, along with postdoctoral research at globally renowned institutions such as ETH Zurich and Total Elf Fina. He also completed international research assignments and served as an invited professor in Japan, contributing to collaborative advancements in molecular engineering and nanoscience. His research spans organic materials, photoactive systems, molecular electronics, supramolecular chemistry, and functional nanomaterials, with sustained involvement in major research laboratories including CINaM and UMR units. Prof. Raimundo has been honored with multiple distinctions, including innovation prizes, scientific excellence bonuses, and competitive fellowships supporting high-level research. His career reflects a dedication to advancing molecular materials and nanoscience through innovative research, international collaboration, and impactful scientific leadership.

Profiles: Scopus | Google Scholar

Featured Publications

Raimundo, J.-M., Blanchard, P., Gallego-Planas, N., Mercier, N., Ledoux-Rak, I., Hierle, R., & Roncali, J. (2002). “Design and synthesis of push−pull chromophores for second-order nonlinear optics derived from rigidified thiophene-based π-conjugating spacers.” The Journal of Organic Chemistry.

Raimundo, J.-M., Blanchard, P., Frere, P., Mercier, N., Ledoux-Rak, I., Hierle, R., & Roncali, J. (2001). “Push–pull chromophores based on 2,2′-bi(3,4-ethylenedioxythiophene) (BEDOT) π-conjugating spacer.” Tetrahedron Letters.

Malytskyi, V., Simon, J.-J., Patrone, L., & Raimundo, J.-M. (2015). “Thiophene-based push–pull chromophores for small molecule organic solar cells (SMOSCs).” RSC Advances.

Liu, S.-G., Shu, L., Rivera, J., Liu, H., Raimundo, J.-M., Roncali, J., Gorgues, A., & Echegoyen, L. (1999). “A New Dyad Based on C60 and a Conjugated Dimethylaniline-Substituted Dithienylethylene Donor.” The Journal of Organic Chemistry.

Videlot, C., Ackermann, J., Blanchard, P., Raimundo, J.-M., Frère, P., Allain, M., de Bettignies, R., Levillain, E., & Roncali, J. (2003). “Field‐Effect Transistors Based on Oligothienylenevinylenes: From Solution π‐Dimers to High‐Mobility Organic Semiconductors.” Advanced Materials.

Raimundo, J.-M., Blanchard, P., Brisset, H., Akoudad, S., & Roncali, J. (2000). “Proquinoid acceptors as building blocks for the design of efficient π-conjugated fluorophores with high electron affinity.” Chemical Communications.

Edelmann, M. J., Raimundo, J.-M., Utesch, N. F., Diederich, F., Boudon, C., Gisselbrecht, J.-P., & Gross, M. (2002). “Dramatically enhanced fluorescence of heteroaromatic chromophores upon insertion as spacers into oligo(triacetylene)s.” Helvetica Chimica Acta.

Prof. Dr. Ismail Zainol | Nano Collagen | Excellence in Research Award

Prof. Dr. Ismail Zainol | Nano Collagen | Excellence in Research Award

Universiti Pendidikan Sultan Idris | Malaysia

Prof. Dr. Ismail Zainol is a distinguished researcher and academician specializing in polymer science, composites, and biomedical materials. He holds a Ph.D. in Polymer Science and Composites from the University of Manchester Institute of Science and Technology (UMIST) and a B.Sc. (Hons) in Chemistry from Universiti Kebangsaan Malaysia. With extensive experience leading and contributing to numerous research projects, his work primarily focuses on the development of natural hydroxyapatite and collagen-based biomaterials, green chemistry applications, wound dressing scaffolds, dental composites, and polymeric drug delivery systems. He has spearheaded innovative studies on biogenic nano-hydroxyapatite from fish scales for biomedical and cosmetic applications, as well as chitosan-collagen composites for tissue engineering and water filtration. Prof. Dr. Zainol has been recognized internationally and nationally with multiple gold, silver, and bronze awards, including accolades from ITEX, PECIPTA, SIIF, and SIRIM Berhad, reflecting his contributions to sustainable materials, biomedical innovation, and chemical engineering. His research not only bridges scientific innovation and practical applications but also enhances environmental sustainability and human health. Through his pioneering work and dedication to academic excellence, he continues to make a significant impact on polymer science, biomaterials, and green technology, inspiring future research and innovation in these fields.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Mudhafar, M.; Alsailawi, H.A.; Zainol, I.; Zorah, M.; Abdulraheem, M.N.; Hasan, M.M.; Lahhob, Q.R.; Oudha, H.A.A.; Ali, A.M. (2024). “Extraction, identification of chemical constituents, and in vitro evaluation against cells and bacterial pathogens of the leaves of Polyalthia rumphii.” Journal of Medicinal and Pharmaceutical Chemistry Research.

Mudhafar, M.; Zainol, I.; Alsailawi, H.A.; Karhib, M.M.; Zorah, M.; Alnagdi, F.H.; Hamzah, M.S. (2023). “Bioactive chemical constituents of three crude extracts of Polyalthia sclerophylla using GC-MS and phytochemical screening and their antibacterial and cytotoxicity activities.” Eurasian Chemical Communications.

Mudhafar, M.; Alsailawi, H.A.; Zorah, M.; Karhib, M.M.; Zainol, I.; Kadhim, F.K. (2023). “Biogenic synthesis and characterization of AgNPs using CEPS: Cytotoxicity and antibacterial activities.” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences.

Anene, F.A.; Jaafar, C.N.A.; Mohamed Ariff, A.H.; Zainol, I.; Mohd Tahir, S.; Abdul Razak, B.; Salit, M.S.; Anene-Amaechi, J. (2023). “Biomechanical properties and corrosion resistance of plasma-sprayed fish scale hydroxyapatite (FsHA) and FsHA-doped yttria-stabilized zirconia coatings on Ti–6Al–4V alloy for biomedical applications.” Coatings.

Mudhafar, M.; Zainol, I.; Alsailawi, H.A.; Zorah, M.; Karhib, M.M.; Mahmood Mahdi, N. (2023). “Preparation and characterization of FsHA/FsCol beads: Cell attachment and cytotoxicity studies.” Heliyon.

Anene, F.A.; Jaafar, C.N.A.; Zainol, I.; Ariff, A.H.M.; Tahir, S.M. (2022). “Evaluation of corrosion inhibition of plasma sprayed FsHA/YSZ coating on β-titanium (Ti-13Nb-13Zr) alloy using electrochemical techniques.” Journal of Biomimetics, Biomaterials and Biomedical Engineering.

Aiza Jaafar, C.N.; Zainol, I.; Izyan Khairani, M.I.; Dele-Afolabi, T.T. (2022). “Physical and mechanical properties of tilapia scale hydroxyapatite-filled high-density polyethylene composites.” Polymers.

Mudhafar, M.; Zainol, I.; Alsailawi, H.A.; Aiza Jaafar, C.N. (2022). “Synthesis and characterization of fish scales of hydroxyapatite/collagen–silver nanoparticles composites for the applications of bone filler.” Journal of the Korean Ceramic Society.

Dr. Vincenzo Mazzaracchio | Sensors | Best Researcher Award

Dr. Vincenzo Mazzaracchio | Sensors | Best Researcher Award

University of Rome “Tor Vergata” | Italy

Dr. Vincenzo Mazzaracchio is a Post-Doctoral Researcher at the University of Rome “Tor Vergata,” working in the research group of Professor Fabiana Arduini. He specializes in analytical chemistry and electrochemical sensor technology, focusing on the design and development of miniaturized, portable, and wearable electrochemical (bio)sensors for environmental, food, and biomedical applications. Dr. Mazzaracchio obtained his academic training in chemistry and analytical sciences, equipping him with a strong foundation in nanomaterials, electrochemistry, and device fabrication. His research integrates carbon-based and metallic nanomaterials with advanced sensing platforms, such as paper-based, screen-printed, and microfluidic devices, to achieve sensitive, cost-effective, and real-time detection. He has carried out international research experiences at Technische Universität Chemnitz (Germany), the University of Johannesburg (South Africa), and the Okinawa Institute of Science and Technology (Japan), enhancing his global scientific perspective. With over 40 publications in peer-reviewed journals and an H-index of 19, his contributions have significantly advanced electrochemical biosensing and wearable diagnostics. Dr. Mazzaracchio has received recognition for innovation in analytical device development and continues to explore wireless, user-friendly systems for point-of-care testing. His work bridges chemistry, engineering, and digital technology, driving the future of smart sensing for health and environmental sustainability.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Colozza, N., Mazzaracchio, V., Di Gregorio, C., Seddaoui, N., Aquilani, D., Pizziconi, A., Gullo, L., Argiriadis, E., & Arduini, F. (2026). “3D-printed extraction chamber and paper-based screen-printed sensors for zinc analysis in soil and Antarctic sediments.” Talanta.

Chebil, A., Mazzaracchio, V., Duranti, L., Gullo, L., & Arduini, F. (2025). “Paper-based metal-air battery electrochemical sensor for smartphone-assisted oxygen monitoring in food packaging.” Sensors and Actuators A: Physical.

Mazzaracchio, V., & Arduini, F. (2025). “Smart microfluidic devices integrated in electrochemical point-of-care platforms for biomarker detection in biological fluids.” Analytical and Bioanalytical Chemistry.

Gosti, C., Mousavi, Z., Fiore, L., Mazzaracchio, V., Olivieri, F., Gentile, G., Arduini, F., & Bobacka, J. (2025). “Carbon Black and PEDOT:PSS in a synergistic solid contact for reliable printed potentiometric sensors.” ACS Sensors.

Nocerino, V., Miranda, B., Dardano, P., Colella, S., Vedi, V., Antonacci, A., Mazzaracchio, V., Fiore, L., Arduini, F., De Stefano, L., et al. (2024). “Design of an electrochemical hydrogel nanocomposite immunosensor for the detection of hemoglobin in blood.” Microchemical Journal.

Mazzaracchio, V., Fiore, L., Gullo, L., Seddaoui, N., Duranti, L., Siliprandi, V., La Placa, G., Frank, G., Raffaelli, G., Gualtieri, P., et al. (2024). “Near field communication-assisted paper-based electrochemical sensing platform for study in personalized nutrition.” Microchemical Journal.

Sharifi, A. R., Mazzaracchio, V., Duranti, L., Gullo, L., Brannetti, S., Peyravian, M., Kiani, M. A., & Arduini, F. (2024). “Nanopaper integrated smart device: An opto-electrochemical biosensor for real-time dual on-field detection of organophosphorus pesticides.” ACS Sensors.