Qi Sun | Membrane Materials | Best Researcher Award

Prof. Qi Sun | Membrane Materials | Best Researcher Award

Zhejiang University | China

Prof. Qi Sun is a distinguished chemist and academic leader recognized for impactful contributions to chemical and biochemical engineering, particularly in materials chemistry and catalysis. He earned his PhD in Chemistry from Zhejiang University (2009–2014) under the mentorship of Feng-Shou Xiao, following a Bachelor’s degree in Material Chemistry from Harbin University of Science and Technology (2005–2009). After completing doctoral training, he gained extensive international research experience as a Postdoctoral Research Associate in the Department of Materials Science and Engineering at Zhejiang University, supervised by Jixue Li and Feng-Shou Xiao, and subsequently in the Department of Chemistry at the University of South Florida under Shengqian Ma. These roles strengthened his expertise in advanced functional materials, porous materials, catalysis, and structure–property relationships. He currently serves as Professor at the College of Chemical and Biochemical Engineering, Zhejiang University, where he leads innovative research integrating chemistry, materials science, and engineering applications. His academic excellence has been recognized through multiple prestigious honors, including Outstanding Doctoral Thesis at Zhejiang University, National Scholarship and Outstanding Graduate Student awards, and Outstanding Undergraduate Graduation Thesis distinction. Through sustained research innovation, mentorship, and scholarly leadership, Prof. Qi Sun continues to advance chemical science and foster the next generation of researchers.


View ORCID ProfileView Google Scholar Profile

Featured Publications

Zhongmin Zhou | Solar Cells | Research Excellence Award

Prof. Zhongmin Zhou | Solar Cells | Research Excellence Award

Qingdao University of Science and Technology | China

Prof. Zhongmin Zhou is a Professor at Qingdao University of Science and Technology and a leading researcher in the field of new energy materials, with a strong focus on high-performance perovskite solar cells. He received his Bachelor’s, Master’s, and Doctoral degrees from Qingdao University of Science and Technology and the Institute of Chemistry, Chinese Academy of Sciences, respectively, building a solid foundation in materials chemistry and device physics. Following his doctorate, he undertook postdoctoral research at the Qingdao Institute of Bioenergy and Bioprocess Technology (CAS), the National Institute for Materials Science, and The University of Tokyo, gaining extensive international research experience in advanced functional materials. Since joining Qingdao University of Science and Technology, he has been actively engaged in molecular design and device engineering to enhance the efficiency, stability, and scalability of perovskite photovoltaic devices. His research outcomes have been widely recognized through publications in top-tier journals such as Nature Photonics, Nature Communications, JACS, Angewandte Chemie, and Advanced Materials, accumulating over 5,000 citations. He has received multiple academic honors and competitive research awards for his innovative contributions. Overall, Prof. Zhou’s work significantly advances next-generation solar energy technologies and supports the global transition toward sustainable energy solutions.

Profile: Scopus

Featured Publications

Ion-Mediated Self-Healing Strategy Enabling Efficient and Stable ETL-Free Perovskite Solar Cells
Angewandte Chemie International Edition, 2025
Additive Engineering Toward Suppression of Sn2+ Oxidation in Sn–Pb Perovskite Solar Cells: Mechanisms, Advances, and Outlook
– Review Article, 2025
Ion-Migration-Induced Dual Interface Dipoles for High-Performance Perovskite Solar Cells
Matter, 2025
Competitive-Coordination-Induced Crystallization Regulation for Efficient and Stable Sn–Pb Perovskite Solar Cells
Angewandte Chemie International Edition, 2025
Substituent Adjustment Strategy on Modifying Perovskite/Spiro-OMeTAD Interface in Perovskite Solar Cells
Chemical Engineering Journal, 2025

Huangjie Lu | Ion Detection | Young Researcher Award

Dr. Huangjie Lu | Ion Detection | Young Researcher Award

Changzhou University | China

Dr. Huangjie Lu is a dedicated researcher specializing in radiochemistry, actinide chemistry, coordination chemistry, radiation detection, and crystallographic separation. He holds a Ph.D. in Inorganic Chemistry from the University of Chinese Academy of Sciences, an M.Eng. in Materials Science and Engineering from Soochow University, and a B.Eng. in the same field from the Nanjing Institute of Technology. His professional experience includes serving as an Assistant Researcher at the Shanghai Institute of Applied Physics, Chinese Academy of Sciences, where he contributed extensively to advanced radiochemical and coordination compound studies, and he currently continues his academic journey at Changzhou University. Dr. Lu’s research explores the design, synthesis, and functional development of coordination compounds, inorganic complexes, and MOF-based materials, leading to more than 40 peer-reviewed publications, including over 24 first- or corresponding-author papers in top-tier journals such as JACS, Nature Communications, Advanced Science, and ACS Sensors. He has also secured nine granted patents demonstrating his innovative contributions to chemical sciences. Recognized for his impactful research and scientific leadership, Dr. Lu continues to advance the frontiers of inorganic and radiochemistry, contributing significantly to material innovation and radiochemical applications.

Profiles: Scopus | Orcid

Featured Publications

Gu, Q., Lei, J., Deng, W., Zhang, H., Zhang, Z.-H., Lu, H., Hu, B., & Xie, J. (2025). “A uranyl-based luminescent dosimeter for ultralow-dose tracking of UV and X-ray radiation” in Chemical Communications.

Cheng, S., Xu, T., Qian, J., Lu, H., Zhang, Z.-H., He, M.-Y., & Chen, Q. (2025). “Adsorption of radioiodine species by a microporous rare-earth-organic framework” in Inorganic Chemistry.

Yang, J., Bai, Y., Lu, H., Ma, J., Xie, J., Qiu, J., Guo, X., Wang, Y., Wang, S., & Lin, J. (2025). “Emergence of acidity modulation as a new strategy for eliciting stable radicals in multi-stimuli-responsive metal-oxo clusters” in Chinese Chemical Letters.

Bai, Y., Yang, J., Yang, L., Lu, H., Ma, J., Qiu, J., Wang, Y., & Lin, J. (2025). “Identical metal–organic frameworks with distinct colors: the role of modulator in directing photophysical properties” in ACS Materials Letters.

Bai, Y., Lu, H., Lei, M., Qiu, J., & Lin, J. (2025). “An ultrastable luminescent covalent organic polymer for selective Pd²⁺ detection in strong acid” in EcoEnergy.

Yin, X., Wang, Y., Li, Y., Jia, X., Sun, J., Lu, H., & Li, Q. (2025). “Selective crystallization separation driven by structural divergence in lanthanide mixed-organic systems” in Inorganic Chemistry.

Yang, J., Lu, H., Yang, L., Yao, Y., Wei, Z., Chen, M., Qi, H., Ren, Y., Wang, Y., Qiu, J., et al. (2024). “Lanthanide organic–inorganic hybrids for X-ray scintillation and imaging” in Inorganic Chemistry.

Jean-Manuel Raimundo | Materials Science | Best Researcher Award

Prof. Dr. Jean-Manuel Raimundo | Materials Science | Best Researcher Award

Aix Marseille Univ, CINaM | France

Prof. Dr. Jean-Manuel Raimundo is an accomplished scientist in organic chemistry and nanoscience, recognized for his contributions to molecular materials, functional chromophores, and advanced nanostructured systems. He holds a Bachelor’s degree in Biochemistry, a Master’s degree in Chemistry, a PhD in Organic Chemistry, and a Habilitation à Diriger des Recherches, establishing a strong academic foundation for his multidisciplinary research. His professional journey includes roles as temporary lecturer, assistant professor, associate professor, professor, and full professor at leading French universities, along with postdoctoral research at globally renowned institutions such as ETH Zurich and Total Elf Fina. He also completed international research assignments and served as an invited professor in Japan, contributing to collaborative advancements in molecular engineering and nanoscience. His research spans organic materials, photoactive systems, molecular electronics, supramolecular chemistry, and functional nanomaterials, with sustained involvement in major research laboratories including CINaM and UMR units. Prof. Raimundo has been honored with multiple distinctions, including innovation prizes, scientific excellence bonuses, and competitive fellowships supporting high-level research. His career reflects a dedication to advancing molecular materials and nanoscience through innovative research, international collaboration, and impactful scientific leadership.

Profiles: Scopus | Google Scholar

Featured Publications

Raimundo, J.-M., Blanchard, P., Gallego-Planas, N., Mercier, N., Ledoux-Rak, I., Hierle, R., & Roncali, J. (2002). “Design and synthesis of push−pull chromophores for second-order nonlinear optics derived from rigidified thiophene-based π-conjugating spacers.” The Journal of Organic Chemistry.

Raimundo, J.-M., Blanchard, P., Frere, P., Mercier, N., Ledoux-Rak, I., Hierle, R., & Roncali, J. (2001). “Push–pull chromophores based on 2,2′-bi(3,4-ethylenedioxythiophene) (BEDOT) π-conjugating spacer.” Tetrahedron Letters.

Malytskyi, V., Simon, J.-J., Patrone, L., & Raimundo, J.-M. (2015). “Thiophene-based push–pull chromophores for small molecule organic solar cells (SMOSCs).” RSC Advances.

Liu, S.-G., Shu, L., Rivera, J., Liu, H., Raimundo, J.-M., Roncali, J., Gorgues, A., & Echegoyen, L. (1999). “A New Dyad Based on C60 and a Conjugated Dimethylaniline-Substituted Dithienylethylene Donor.” The Journal of Organic Chemistry.

Videlot, C., Ackermann, J., Blanchard, P., Raimundo, J.-M., Frère, P., Allain, M., de Bettignies, R., Levillain, E., & Roncali, J. (2003). “Field‐Effect Transistors Based on Oligothienylenevinylenes: From Solution π‐Dimers to High‐Mobility Organic Semiconductors.” Advanced Materials.

Raimundo, J.-M., Blanchard, P., Brisset, H., Akoudad, S., & Roncali, J. (2000). “Proquinoid acceptors as building blocks for the design of efficient π-conjugated fluorophores with high electron affinity.” Chemical Communications.

Edelmann, M. J., Raimundo, J.-M., Utesch, N. F., Diederich, F., Boudon, C., Gisselbrecht, J.-P., & Gross, M. (2002). “Dramatically enhanced fluorescence of heteroaromatic chromophores upon insertion as spacers into oligo(triacetylene)s.” Helvetica Chimica Acta.

Dr. Arun Kumar S | Energy Storage Devices |Best Researcher Award

Dr. Arun Kumar S | Energy Storage Devices | Best Researcher Award

Kuppam Engineering College | India

Dr. Arun Kumar S is a dedicated physicist and academician with extensive experience in nanomaterials and energy storage applications. He completed his B.Sc. in Physics with First Class from Arignar Anna College, Krishnagiri, followed by an M.Sc. in Physics from Periyar University, Salem. He earned his Ph.D. in Physics from Periyar University under the supervision of Prof. Dr. P. M. Anbarasan, focusing on hybrid supercapacitors using binder-free metal oxide electrodes for energy storage. Dr. Arun Kumar has held positions as Assistant Professor and Associate Professor in Physics at Kuppam Engineering College, where he teaches Engineering Physics, Quantum Technologies, and related courses. He has also delivered lectures in Nanoscience, Nanotechnology, and Polymer Science at CIPET: SARP-LARPM. His research expertise spans the synthesis and characterization of nanomaterials, thin-film fabrication, and development of advanced functional materials for supercapacitor devices. He possesses hands-on experience with XRD, FTIR, UV-Vis spectroscopy, XPS, SEM, TEM, EDX, electrochemical workstations, electrospinning, and spin coating techniques. Dr. Arun Kumar’s work contributes to advancing energy-efficient technologies, with a strong focus on functional nanomaterials and polymer-based electrodes. His dedication to teaching, research, and innovation continues to inspire the next generation of scientists.

Profile: Google Scholar

Featured Publications

Gowdhaman, A., Arun Kumar, S., Elumalai, D., Balaji, C., Sabarinathan, M., Ramesh, R., & Navaneethan, M. (2023). “Ni-MOF derived NiO/Ni/r-GO nanocomposite as a novel electrode material for high-performance asymmetric supercapacitor” in Journal of Energy Storage.

Aswathy, N.R., Arun Kumar, S., Mohanty, S., Nayak, S.K., & Palai, A.K. (2021). “Polyaniline/multi-walled carbon nanotubes filled biopolymer based flexible substrate electrodes for supercapacitor applications” in Journal of Energy Storage.

Prabhu, S., Maruthapandi, M., Durairaj, A., Arun Kumar, S., Luong, J.H.T., Ramesh, R., & Gedanken, A. (2023). “Performances of Co²⁺-Substituted NiMoO₄ Nanorods in a Solid-State Hybrid Supercapacitor” in ACS Applied Energy Materials.

Arun Kumar, S., Mohanty, A., Saravanakumar, B., Mohanty, S., Nayak, S.K., & Ramadoss, A. (2020). “Three-dimensional Bi₂O₃/Ti microspheres as an advanced negative electrode for hybrid supercapacitors” in Chemical Communications.

Chettiannan, B., Mathan, S., Arumugam, G., Srinivasan, A., & Rajendran, R. (2024). “Attaining high energy density using metal-organic framework-derived NiO/Co₃O₄/NiCo₂O₄ as an electrode in asymmetric hybrid supercapacitor” in Journal of Energy Storage.

Chettiannan, B., Srinivasan, A.K., Arumugam, G., Shajahan, S., Abu Haija, M., & Rajendran, R. (2023). “Incorporation of α-MnO₂ Nanoflowers into Zinc-Terephthalate Metal–Organic Frameworks for High-Performance Asymmetric Supercapacitors” in ACS Omega.

Arun Kumar, S., Gowdhaman, A., Balaji, C., Ramesh, R., & Anbarasan, P.M. (2024). “Exploring the potential of two-dimensional NiCo₂O₄ sheets//BiPO₄ flakes as a hybrid supercapacitor device for energy storage application” in Colloids and Surfaces A: Physicochemical and Engineering Aspects.