Juan Wen | Water Treatment | Research Excellence Award

Dr. Juan Wen | Water Treatment | Research Excellence Award

Lanzhou University | China

Dr. Juan Wen is an Associate Professor in the School of Materials and Energy at Lanzhou University and a specialist in advanced ceramic materials and nanotechnology. His academic training includes a Ph.D. in Nuclear Science and Technology from Lanzhou University, complemented by undergraduate studies in Physical Science and Technology at the same institution. During his doctoral period, he gained international research exposure as a visiting student at the Ion Beam Materials Laboratory, Los Alamos National Laboratory, USA, where he strengthened his expertise in ion irradiation and accelerator-based materials research. His professional experience spans progressive academic roles, including Teaching Assistant, Assistant Professor, and Associate Professor, reflecting sustained contributions to teaching and research. Dr. Wen’s research interests focus on nanogenerators, ion irradiation effects on ceramic materials, structural and performance evolution of nanostructured ceramics under extreme conditions such as high temperature and irradiation, and the synthesis and microstructural characterization of polycrystalline oxide ceramics. He also possesses strong practical experience in the operation and maintenance of implanter and accelerator systems, bridging fundamental research with advanced experimental techniques. His work has earned recognition within the materials and nuclear science communities through scholarly publications and collaborative projects. Overall, Dr. Juan Wen’s career demonstrates a consistent commitment to advancing ceramic materials research for extreme environments and energy-related applications, contributing significantly to both academic knowledge and technological development.

View Google Scholar Profile

Featured Publications

Qi Sun | Membrane Materials | Best Researcher Award

Prof. Qi Sun | Membrane Materials | Best Researcher Award

Zhejiang University | China

Prof. Qi Sun is a distinguished chemist and academic leader recognized for impactful contributions to chemical and biochemical engineering, particularly in materials chemistry and catalysis. He earned his PhD in Chemistry from Zhejiang University (2009–2014) under the mentorship of Feng-Shou Xiao, following a Bachelor’s degree in Material Chemistry from Harbin University of Science and Technology (2005–2009). After completing doctoral training, he gained extensive international research experience as a Postdoctoral Research Associate in the Department of Materials Science and Engineering at Zhejiang University, supervised by Jixue Li and Feng-Shou Xiao, and subsequently in the Department of Chemistry at the University of South Florida under Shengqian Ma. These roles strengthened his expertise in advanced functional materials, porous materials, catalysis, and structure–property relationships. He currently serves as Professor at the College of Chemical and Biochemical Engineering, Zhejiang University, where he leads innovative research integrating chemistry, materials science, and engineering applications. His academic excellence has been recognized through multiple prestigious honors, including Outstanding Doctoral Thesis at Zhejiang University, National Scholarship and Outstanding Graduate Student awards, and Outstanding Undergraduate Graduation Thesis distinction. Through sustained research innovation, mentorship, and scholarly leadership, Prof. Qi Sun continues to advance chemical science and foster the next generation of researchers.


View ORCID ProfileView Google Scholar Profile

Featured Publications

Zhongmin Zhou | Solar Cells | Research Excellence Award

Prof. Zhongmin Zhou | Solar Cells | Research Excellence Award

Qingdao University of Science and Technology | China

Prof. Zhongmin Zhou is a Professor at Qingdao University of Science and Technology and a leading researcher in the field of new energy materials, with a strong focus on high-performance perovskite solar cells. He received his Bachelor’s, Master’s, and Doctoral degrees from Qingdao University of Science and Technology and the Institute of Chemistry, Chinese Academy of Sciences, respectively, building a solid foundation in materials chemistry and device physics. Following his doctorate, he undertook postdoctoral research at the Qingdao Institute of Bioenergy and Bioprocess Technology (CAS), the National Institute for Materials Science, and The University of Tokyo, gaining extensive international research experience in advanced functional materials. Since joining Qingdao University of Science and Technology, he has been actively engaged in molecular design and device engineering to enhance the efficiency, stability, and scalability of perovskite photovoltaic devices. His research outcomes have been widely recognized through publications in top-tier journals such as Nature Photonics, Nature Communications, JACS, Angewandte Chemie, and Advanced Materials, accumulating over 5,000 citations. He has received multiple academic honors and competitive research awards for his innovative contributions. Overall, Prof. Zhou’s work significantly advances next-generation solar energy technologies and supports the global transition toward sustainable energy solutions.

Profile: Scopus

Featured Publications

Ion-Mediated Self-Healing Strategy Enabling Efficient and Stable ETL-Free Perovskite Solar Cells
Angewandte Chemie International Edition, 2025
Additive Engineering Toward Suppression of Sn2+ Oxidation in Sn–Pb Perovskite Solar Cells: Mechanisms, Advances, and Outlook
– Review Article, 2025
Ion-Migration-Induced Dual Interface Dipoles for High-Performance Perovskite Solar Cells
Matter, 2025
Competitive-Coordination-Induced Crystallization Regulation for Efficient and Stable Sn–Pb Perovskite Solar Cells
Angewandte Chemie International Edition, 2025
Substituent Adjustment Strategy on Modifying Perovskite/Spiro-OMeTAD Interface in Perovskite Solar Cells
Chemical Engineering Journal, 2025

Azim Khan | Metal Materials | Research Excellence Award

Assoc. Prof. Dr. Azim Khan | Metal Materials | Research Excellence Award

University of Electronic Science and Technology of China, China

Assoc. Prof. Dr. Azim Khan is a dedicated materials scientist whose academic and professional journey spans advanced research, university teaching, and extensive laboratory expertise across China and Pakistan. He holds an M.Sc. and M.Phil. in Physics with a specialization in solid-state materials, followed by a Ph.D. in Physics/Material Science and Engineering from the Institute of Metal Research, Chinese Academy of Sciences, where he investigated metal oxide dispersion effects on alumina phase transformation and oxidation performance of Ni₂Al₃ coatings. His postdoctoral work and subsequent faculty roles at Anhui University of Technology further strengthened his contributions to high-temperature oxidation, corrosion behavior, phase transformation of nickel-based superalloys, thermal spray coatings, and catalyst development. He has also served as a lecturer and currently works as an associate researcher at the Yangtze River Delta Research Institute, focusing on catalyst synthesis and CVD-based fabrication of carbon nanomaterials such as SWCNTs, MWCNTs, and carbon nanocoils. His research interests include nanostructured coatings, diffusion coatings, nano-composite materials, and high-entropy alloys. Recognized for his scientific excellence, he has received multiple honors, including a prestigious young scientist research fund and awards from IMR-CAS and leading material science laboratories. Dr. Khan continues to advance innovative materials for high-temperature and catalytic applications.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Azim Khan, Rostami, K., Sedighi, M., Khan, S., & Ghasemi, M. (2025). “A Comparative Electrochemical Study of Pt and Ni–Oxide Cathodes: Performance and Economic Viability for Scale-Up Microbial Fuel Cells.” Catalysts. https://doi.org/10.3390/catal15121153

Yu, T., Chen, Y., Fan, Y., Chen, G., Khan, A., Liu, Y., & Jian, X. (2025). “Environmental-friendly visible-light inducing bond change of fluorinated carbon in large-scale for ultrahigh-rate lithium/fluorinated carbon battery.” Journal of Power Sources. https://doi.org/10.1016/j.jpowsour.2025.236367

Chen, G., Fan, Y., Yu, T., Shoaib, M., Khan, A., Liu, Y., & Jian, X. (2024). “Efficient microwave induction to modify surface for high-rate lithium/fluorinated carbon battery with ultra-high power density.” Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2024.154899

Ullah, S., Gul, U., Tariq, S., Ullah, R., Rahman, N., Ali, E.A., Husain, M., Abbas, M., Ullah, H., & Khan, A. (2024). “First principal investigations to explore the half-metallicity, structural, mechanical, and optoelectronic properties of sodium-based fluoroperovskites NaYF₃ (Y = Sc and Ti) for applications in spintronics and optoelectronics.” Inorganic Chemistry Communications. https://doi.org/10.1016/j.inoche.2024.112369

Rehman, S.U., Sun, Q., Wang, J., Lv, W., Khan, A., Liu, Y., Mahmood, N., & Xian, J. (2024). “In-plane heterostructures of transition metal dichalcogenide monolayers with enhanced charge separation and effective overall water splitting.” International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2024.07.171

Shah, S.S.A., Liu, M., Khan, A., Ahmad, F., Abdullah, M.R., Zhang, X., Xu, S., & Peng, Z. (2024). “Twinning aspects and their efficient roles in wrought Mg alloys: A comprehensive review.” Journal of Magnesium and Alloys. https://doi.org/10.1016/j.jma.2024.04.035

Ullah, S., Gul, U., Tariq, S., Ullah, R., Rahman, N., Ali, E.A., Husain, M., Abbas, M., Ullah, H., & Khan, A. (2023). “First Principal Investigations to Explore the Half-Metallicity, Structural, Mechanical, and Optoelectronic Properties of Sodium-Based Fluoroperovskites NaYF₃ (Y = Sc and Ti) for Applications in Spintronics and Optoelectronics.” SSRN. https://doi.org/10.2139/ssrn.4668900

Dr. Arun Kumar S | Energy Storage Devices |Best Researcher Award

Dr. Arun Kumar S | Energy Storage Devices | Best Researcher Award

Kuppam Engineering College | India

Dr. Arun Kumar S is a dedicated physicist and academician with extensive experience in nanomaterials and energy storage applications. He completed his B.Sc. in Physics with First Class from Arignar Anna College, Krishnagiri, followed by an M.Sc. in Physics from Periyar University, Salem. He earned his Ph.D. in Physics from Periyar University under the supervision of Prof. Dr. P. M. Anbarasan, focusing on hybrid supercapacitors using binder-free metal oxide electrodes for energy storage. Dr. Arun Kumar has held positions as Assistant Professor and Associate Professor in Physics at Kuppam Engineering College, where he teaches Engineering Physics, Quantum Technologies, and related courses. He has also delivered lectures in Nanoscience, Nanotechnology, and Polymer Science at CIPET: SARP-LARPM. His research expertise spans the synthesis and characterization of nanomaterials, thin-film fabrication, and development of advanced functional materials for supercapacitor devices. He possesses hands-on experience with XRD, FTIR, UV-Vis spectroscopy, XPS, SEM, TEM, EDX, electrochemical workstations, electrospinning, and spin coating techniques. Dr. Arun Kumar’s work contributes to advancing energy-efficient technologies, with a strong focus on functional nanomaterials and polymer-based electrodes. His dedication to teaching, research, and innovation continues to inspire the next generation of scientists.

Profile: Google Scholar

Featured Publications

Gowdhaman, A., Arun Kumar, S., Elumalai, D., Balaji, C., Sabarinathan, M., Ramesh, R., & Navaneethan, M. (2023). “Ni-MOF derived NiO/Ni/r-GO nanocomposite as a novel electrode material for high-performance asymmetric supercapacitor” in Journal of Energy Storage.

Aswathy, N.R., Arun Kumar, S., Mohanty, S., Nayak, S.K., & Palai, A.K. (2021). “Polyaniline/multi-walled carbon nanotubes filled biopolymer based flexible substrate electrodes for supercapacitor applications” in Journal of Energy Storage.

Prabhu, S., Maruthapandi, M., Durairaj, A., Arun Kumar, S., Luong, J.H.T., Ramesh, R., & Gedanken, A. (2023). “Performances of Co²⁺-Substituted NiMoO₄ Nanorods in a Solid-State Hybrid Supercapacitor” in ACS Applied Energy Materials.

Arun Kumar, S., Mohanty, A., Saravanakumar, B., Mohanty, S., Nayak, S.K., & Ramadoss, A. (2020). “Three-dimensional Bi₂O₃/Ti microspheres as an advanced negative electrode for hybrid supercapacitors” in Chemical Communications.

Chettiannan, B., Mathan, S., Arumugam, G., Srinivasan, A., & Rajendran, R. (2024). “Attaining high energy density using metal-organic framework-derived NiO/Co₃O₄/NiCo₂O₄ as an electrode in asymmetric hybrid supercapacitor” in Journal of Energy Storage.

Chettiannan, B., Srinivasan, A.K., Arumugam, G., Shajahan, S., Abu Haija, M., & Rajendran, R. (2023). “Incorporation of α-MnO₂ Nanoflowers into Zinc-Terephthalate Metal–Organic Frameworks for High-Performance Asymmetric Supercapacitors” in ACS Omega.

Arun Kumar, S., Gowdhaman, A., Balaji, C., Ramesh, R., & Anbarasan, P.M. (2024). “Exploring the potential of two-dimensional NiCo₂O₄ sheets//BiPO₄ flakes as a hybrid supercapacitor device for energy storage application” in Colloids and Surfaces A: Physicochemical and Engineering Aspects.

Dr. M. Belen Garcia Bl | Recubrimientos Protectores | Best Researcher Award

Dr. M. Belen Garcia Bl | Recubrimientos Protectores | Best Researcher Award

Fundación Cidetec | Spain

Dr. M. Belén García-Blanco is a distinguished researcher specializing in surface modification of materials through chemical and electrochemical processes, including anodizing, plasma electrolytic oxidation, electropolishing, and anaphoretic deposition. She earned her Ph.D. in Electrochemistry from the University of Barcelona, following a DEA from the same institution and a Bachelor’s degree in Chemical Sciences from the University of the Basque Country. She currently serves as Principal Investigator and Project Leader at Fundación CIDETEC, where she has contributed to over twenty national and European research projects. Her notable projects include coordinating and leading large-scale European initiatives focused on advanced surface treatments and eco-friendly coatings for conventional and additive-manufactured materials. Dr. García-Blanco has authored multiple articles in high-impact journals on surface treatments and additive manufacturing and has actively participated in international conferences presenting her work on anodizing, electropolishing, and sustainable coatings. She has also guided undergraduate and graduate research projects, mentoring students in electrodeposition and surface engineering, and delivered specialized seminars in surface engineering technologies. Fluent in Basque and English, she is recognized for her scientific leadership, interdisciplinary expertise, and commitment to advancing sustainable and innovative surface modification strategies. Her work continues to drive developments in both fundamental research and industrial applications.

Profiles: Scopus | Orcid

Featured Publications

Mancisidor, A.M.; García-Blanco, M.B.; Quintana, I.; Arrazola, P.J.; Espinosa, E.; Cuesta, M.; Albizuri, J.; Garciandia, F. (2023). Effect of Post-Processing Treatment on Fatigue Performance of Ti6Al4V Alloy Manufactured by Laser Powder Bed Fusion. Journal of Manufacturing and Materials Processing.

Fernández-Calvo, A.I.; Delgado, C.; Dufour, P.; Aldanondo, E.; Díaz, M.; García-Blanco, M.B. (2023). New EoL Routes of Al-Li Aircraft Integral LBW and FSW Welded Panels including New Cr-Free Coatings. Crystals.

García-Blanco, M.B. (2022). A study of parameter and post-processing effects on surface quality improvement of Binder Jet 3D-printed Invar36 alloy parts. Progress in Additive Manufacturing.

García-Blanco, M.B. (2021). Comparative study of different surface treatments applied to Ti6Al4V parts produced by Selective Laser Melting. Transactions of the IMF.

Garcia-Blanco, M.B.; Querejeta, A.; Perez-Garcia, M.R.; Ochoa, J.; Rodriguez, J.; Hope, P.; Hope, J.; Nunez, Y.; Gonzalez, C.; De Saja, R.; et al. (2020). Eco-friendly anaphoretic e-coating for corrosion protection in aeronautic applications (part 2). Galvanotechnik.

García-Blanco, M.B.; Diaz-Fuentes, M.; Espinosa, E.; Mancisidor, A.M.; Vara, G. (2020). Study of the effect of EP, blasting and laser treatments on the surface roughness of Ti6Al4V alloy fabricated by SLM at different build angles. Euro PM 2018 Congress and Exhibition.

García-Blanco, M.B. (2020). Corrosion protection of aeronautic components by an eco-friendly anaphoretic e-coating.

García-Blanco, M.B. (2019). Obtaining tailored surface characteristics by combining shot peening and electropolishing on 316L stainless steel. Applied Surface Science.