Prof Dr. Chang He | Porous framework materials | Young Scientist Award

Prof Dr. Chang He | Porous framework materials | Young Scientist Award

Prof Dr. Chang He | Fujian University of Technology | China

Professional Profiles

Scopus

Orcid

🎓 Academic and Professional Background

Chang He is a university professor at Fujian University of Technology, specializing in energy storage materials. With over six years of experience, he has made significant advancements in the development of porous framework materials for environmental applications. His research primarily focuses on CO₂ catalytic conversion and capacitive deionization technologies. As a principal investigator, he has secured substantial research funding and supervised numerous graduate students. Chang He has also published over 10 peer-reviewed papers, contributing to innovative material development and sustainable environmental solutions.

📚 Editorial Appointments

Chang He serves as a guest editor for the Journal of Environmental Functional Materials and actively reviews manuscripts for prominent journals such as Electrochimica Acta and the Journal of Materials Chemistry A. His editorial and reviewing roles underscore his commitment to advancing research in his field.

🌐 Professional Memberships

Chang He is a member of several renowned organizations, including the Electrochemical Society (ECS), Materials Research Society (MRS), and Chinese Chemical Society (CCS). These affiliations reflect his active involvement in the global scientific community and dedication to interdisciplinary collaboration.

🔬 Areas of Research

Chang He’s research emphasizes CO₂ catalytic conversion, capacitive deionization technologies, advanced electrode materials, and crystalline porous framework materials for energy storage and environmental applications. His innovative work addresses critical environmental challenges while paving the way for sustainable solutions through cutting-edge electrochemical technologies.

Publications Top Noted📑

Metal-organic framework/layered double hydroxide (MOF/LDH) hetero-nanosheet array for capacitive deionization

Authors: Jiang, Z.-W.; Zhang, J.; Mantzavinos, D.; Weng, R.-G.; He, C.

Journal: Chemical Engineering Journal

Year: 2024

A General Base-free Route toward the Building of Metal N-Heterocyclic Carbenes into Covalent Organic Frameworks for CO₂ Conversion

Authors: He, C.; Si, D.-H.; Han, L.; Cao, R.; Huang, Y.-B.

Journal: ACS Catalysis

Year: 2024

A porous metal-organic cage liquid for sustainable CO₂ conversion reactions

Authors: He, C.; Zou, Y.-H.; Si, D.-H.; Cao, R.; Huang, Y.-B.

Journal: Nature Communications

Year: 2023

A CO₂-Masked Carbene Functionalized Covalent Organic Framework for Highly Efficient Carbon Dioxide Conversion

Authors: He, C.; Si, D.-H.; Huang, Y.-B.; Cao, R.

Journal: Angewandte Chemie – International Edition

Year: 2022

Metal-organic frameworks bonded with metal N-heterocyclic carbenes for efficient catalysis

Authors: He, C.; Liang, J.; Zou, Y.-H.; Huang, Y.-B.; Cao, R.

Journal: National Science Review

Year: 2022

Assist Prof Dr. Nagaiah Kambhala | Materials Science | Best Researcher Award

Assist Prof Dr. Nagaiah Kambhala | Materials Science | Best Researcher Award

Assist Prof Dr. Nagaiah Kambhala | Jain (Deemed to be) University | India

Professional Profiles

Google Scholar

Scopus

Orcid

🎓 Educational Background

Dr. Nagaiah Kambhala holds a Ph.D. in Physics from the Centre for Nano and Soft Matter Sciences (CeNS), Bangalore, an autonomous institute under the Department of Science and Technology (DST), Government of India. His doctoral research, completed in April 2017 under Dr. S. Angappane, focused on the synthesis, electrical, and magnetic properties of multiferroics and colossal magnetoresistance materials. He also earned an M.Sc. in Physics with a specialization in Vacuum and Thin Film Physics from Sri Venkateswara University, Tirupati, securing a gold medal for his academic excellence. Dr. Kambhala completed his B.Sc. with a focus on Mathematics, Physics, and Chemistry from R.V.V.N College, Dharanikota, Andhra Pradesh.

💼 Professional Experience

Dr. Nagaiah Kambhala has an extensive academic and research background, marked by his commitment to both teaching and innovation. Since April 2019, he has been serving as an Assistant Professor in the Department of Physics at the School of Sciences, Jain (Deemed-to-be University), Bangalore. Prior to this, he was a National Postdoctoral Fellow from June 2017 to April 2019 at the Indian Institute of Science, Bangalore, under the mentorship of Prof. P.S. Anil Kumar. His research journey also includes a tenure as an Institute Postdoctoral Fellow at IIT Madras between December 2016 and April 2017 and as a Provisional Research Associate at the Centre for Nano and Soft Matter Sciences, Bangalore, from April 2016 to September 2016.

In his teaching career, Dr. Kambhala has delivered courses on topics such as Quantum Mechanics, Material Science, Electronics, and Python Programming, along with laboratory-based practical courses for both M.Sc. and Ph.D. students. He has guided multiple scholars, mentoring over ten M.Sc. theses and supervising five Ph.D. candidates in cutting-edge areas of physics and nanomaterials research, showcasing his dedication to academic excellence and research mentorship.

🔬 Research Interests and Expertise

Dr. Nagaiah Kambhala’s research is centered on pioneering advancements in nano and quantum materials, with a strong focus on their applications in energy and electronics. His key areas of interest include the development of nanomaterials for hydrogen evolution, photocatalysts, and supercapacitor applications, as well as the exploration of the magnetic and transport properties of oxide thin films and multilayers. He has also made significant contributions to memristor and resistive switching studies involving oxides and 2D materials. Furthermore, his work on 2D materials and topological insulators has opened new avenues in spintronic and flexible electronic applications.

Dr. Kambhala possesses extensive expertise in nanomaterial synthesis, utilizing advanced methods like sol-gel and hydrothermal techniques, and in thin-film deposition methods such as DC and RF magnetron sputtering. His proficiency in material characterization encompasses state-of-the-art tools like XRD, FESEM, Raman spectroscopy, and AFM, enabling a comprehensive understanding of the structural and functional properties of materials. His work reflects a seamless blend of innovative research and technical excellence, contributing to the advancement of modern material science.

🏆 Awards and Recognitions

Dr. Nagaiah Kambhala has received numerous accolades for his exceptional contributions to research and academia. Notably, he was honored with the International Best Researcher Award in 2024 by the Asia International Research Awards. He has also been recognized as an Editorial Board Member of the American Journal of Nano Research and Applications. His academic excellence was evident early in his career when he was awarded the Gold Medal for his M.Sc. in Physics at Sri Venkateswara University.

Dr. Kambhala’s research accomplishments include being a recipient of the prestigious National Postdoctoral Fellowship from the SERB-DST, Government of India (2017–2019), and winning the Best Poster Award at the IUMRS-ICA-2013 Conference held at IISc, Bangalore. His participation in international conferences has been supported by travel fellowships from DST-SERB and CICS, reflecting the global relevance of his work. Additionally, he holds a lifetime membership in the Materials Research Society of India and has demonstrated academic excellence by qualifying competitive exams such as GATE (AIR-684) and CSIR-NET (AIR-143). These achievements underscore Dr. Kambhala’s dedication to advancing science and fostering innovation.

📚 Teaching and Mentorship

Dr. Kambhala is actively engaged in teaching M.Sc. and Ph.D. coursework, covering subjects like Quantum Mechanics, Material Science, Python Programming, and Electronics. He has mentored over 10 M.Sc. projects (with 6 ongoing) and supervises 5 Ph.D. scholars. His innovative teaching methods include the use of ICT tools, online platforms, and interactive assessment systems like Google Classroom.

🧪 Research Skills and Methodologies

Dr. Kambhala has expertise in a variety of synthesis techniques, including sol-gel, hydrothermal, thin-film deposition, and single-crystal growth methods. His proficiency extends to material characterization tools such as XRD, FESEM, Raman, and AFM. He also specializes in advanced measurement techniques for magnetic, electrical, and multiferroic properties, leveraging tools like MPMS SQUID magnetometers and PPMS.

💻 Technical Skills

Dr. Kambhala is adept in Python programming, data analysis with Origin Pro, and software for x-ray diffraction (FullProf and PDXL2) and AFM data analysis (WSXM). He is also skilled in using ICT tools for education.

🌏 Professional Memberships and Contributions

Dr. Kambhala is a lifetime member of the Materials Research Society of India and serves as an editorial board member of international scientific journals. He actively participates in academic events, contributing to the global research community.

Publications Top Noted📚 

Review on Recent Advances of Nickel Sulfide Nano Electrocatalysts for Hydrogen Evolution

Authors: Haridas, H., Somapur, B., Akkera, H.S., Neella, N., Kambhala, N.

Journal: ChemistrySelect

Year: 2024

Sol-gel spin-coated Y-doped SnO2 nanostructured thin films for various optoelectronic device applications

Authors: Kumar, Y., Akkera, H.S., Reddy, G.S., Kambhala, N.

Journal: Physica B: Condensed Matter

Year: 2024

Structural, optical, and photocatalytic properties of nano-scaled g-C3N4 materials

Authors: Shibu, A., Dsouza, A., Akkera, H.S., Giresha, A.S., Kambhala, N.

Journal: Applied Physics A: Materials Science and Processing

Year: 2024

Correction to: Influence of Sm3+ doped β‑Ga2O3 thin films on structural, optical, and photoluminescence properties

Authors: Kumar, M.D., Akkera, H.S., Kambhala, N., Ramesh, C.S., Vijaya Kumar, K.

Journal: Journal of Materials Science: Materials in Electronics

Year: 2024

Influence of Sm3+ doped β-Ga2O3 thin films on structural, optical, and photoluminescence properties

Authors: Kumar, M.D., Akkera, H.S., Kambhala, N., Ramesh, C.S., Vijaya Kumar, K.

Journal: Journal of Materials Science: Materials in Electronics

Year: 2023

Mr. Jun Du | Materials Science | Industrial Chemistry Efficiency Award

Mr. Jun Du | Materials Science | Industrial Chemistry Efficiency Award

Mr. Jun Du | Nanchang University | China

Dr. Du Jun, a distinguished professor with a Doctorate in Materials Science and Engineering, has showcased an outstanding academic trajectory. His education spans Chemical Engineering (B.Sc.) and Physics (M.Sc.) from Nanchang University and a Ph.D. from Zhejiang University. This diverse academic background equips him with a multidisciplinary approach essential for driving innovation in industrial chemistry.

Professional Profile

Scopus

🎓 Educational Background

Dr. Du Jun laid the foundation for his career in materials science with a Bachelor’s Degree in Chemical Engineering from Nanchang University (1990–1994). He further expanded his academic expertise by earning a Master’s Degree in Physics (1997–2000) from the same university, showcasing his multidisciplinary approach to scientific challenges. He achieved the pinnacle of his academic pursuits with a Doctorate in Materials Science and Engineering from Zhejiang University (2003–2007), solidifying his expertise in the field.

🧑‍🏫 Professional Experience

Since 1994, Dr. Du has been devoted to teaching and research at the Department of Chemical Engineering, Nanchang University. Over the years, he has significantly contributed to the academic community, serving as a Master’s Program Director, where he guided numerous graduate students in advanced research. His career is marked by a commitment to innovative teaching practices and fostering excellence in chemical engineering education.

📚 Teaching Contributions

Dr. Du has been at the forefront of educational innovation, making a lasting impact through his initiatives. He directed the China University MOOC course and developed the online-offline first-class course Chemical Process in Jiangxi Province. His work on innovative teaching projects includes heading the virtual simulation experiment project Gas System and delivering lectures on the highly regarded course Chemical Thermodynamics.

Dr. Du has also contributed extensively to academic resources. He edited and published the textbook Chemical Engineering Computing and co-authored the third and fourth editions of Chemical Industry Design, a national planning textbook for higher education. Additionally, he spearheaded an industry-university cooperation project in 2021 and led an employment education project of the Ministry of Education in 2022, further advancing the integration of academia and industry.

🔬 Scientific Research Expertise

Dr. Du’s research focuses on one-dimensional semiconductor nanomaterials and low-integration solvent separation gases, addressing critical challenges in materials science. He has led or participated in five significant projects under the National Natural Science Foundation of China, contributing to groundbreaking advancements in the field.His prolific research output includes 32 SCI papers, with 6 published in SCI Zone 1 journals, demonstrating the high impact and quality of his work. Furthermore, he holds 8 national invention patents, underscoring his contributions to the practical applications of materials science.

🏅 Highlights and Achievements

Dr. Du Jun is celebrated as a trailblazer in materials science and chemical engineering. His unwavering dedication to teaching, research, and innovation has inspired students and peers alike. As a mentor, educator, and researcher, he remains committed to advancing chemical engineering education through pioneering methods, high-quality resources, and impactful research. His work continues to address real-world challenges, making a significant impact in the field.

Publications Top Noted📚

Efficient selection and reversible adsorption of sulfur dioxide by methylated polyethylenimide supported by porous carbon microspheres

Authors: Wang, S., Ma, J., Ye, Y., Peng, H., Du, J.

Journal: Separation and Purification Technology

Year: 2024

Preparation and photocatalytic performance of BiOCl nanosheet-TiO2 nanotube array composites

Authors: Liu, Y., You, M., Li, R., Du, J.

Journal: AIP Advances

Year: 2024

Highly selective capture of sulfur dioxide by low viscosity 1,2,4-triazole + [Emim]Cl deep eutectic solvents

Authors: Wang, L., Zhu, Y., Ye, Y., Ma, J., Du, J.

Journal: Separation and Purification Technology

Year: 2024

Synthesis of C/N-TiO2@MIL-100(Fe) for highly efficient photocatalytic degradation of tetracycline under visible light irradiation

Authors: Cao, F., You, M., Huang, L., Liao, H., Du, J.

Journal: Journal of Photochemistry and Photobiology A: Chemistry

Year: 2024

Preparation and Photocatalytic Properties of ZIF-8@TiO2 Composite Photocatalysts

Authors: Tu, S., Zhong, R., Zhang, C., Wu, W., Du, J.

Journal: Cailiao Daobao/Materials Reports

Year: 2024

Mr. Mingzhong Yuan, Materials Science, Best Researcher Award 

Mr. Mingzhong Yuan, Materials Science, Best Researcher Award 

Mr. Mingzhong Yuan, University of Science and Technology Beijing, China

Dr. Mingzhong Yuan is a distinguished researcher with a specialization in the crystal structure and thermodynamic properties of materials. He is currently affiliated with the University of Science and Technology Beijing, where his academic and professional endeavors have made significant contributions to the field of materials science. Dr. Yuan’s research is particularly focused on the exploration of novel compounds, where he applies advanced analytical techniques to uncover their structural and thermal characteristics.

Professional Profile

Scopus

🧑‍🎓 Academic and Professional Background

Dr. Mingzhong Yuan’s primary research interests lie in Crystal Structure and Thermodynamic Properties. His expertise is rooted in materials science, where he focuses on characterizing complex compounds and understanding their thermal behaviors. Through his academic pursuits, Dr. Yuan has contributed to the advancement of materials science by unveiling insights into the Sc-Sb system.

🔍 Research and Innovations

Dr. Yuan’s research portfolio includes the groundbreaking discovery and analysis of the new compound Sc₄Sb₂.₅₂ in the Sc-Sb system. His methodological approach involved a detailed examination of the crystal structure, where he utilized X-ray powder diffraction, SEM imaging, and TEM diffraction for precise characterization.

📊 Areas of Expertise

Dr. Yuan’s expertise lies in thermodynamic modeling, particularly with Cp curve analysis for materials. His team employed the classical three-step method of DSC to determine the Cp (heat capacity) of Sc₄Sb₂.₅₂, providing valuable insights into high-temperature properties via the Maier-Kelley relation and low-temperature properties using the Debye function. This comprehensive approach enabled a segmented piecewise function representation of the Cp curve.

👥 Professional Memberships and Industry Engagements

An active member of prestigious organizations, Dr. Yuan participates in the Chinese National Phase Diagram Conference and the International Materials Design Symposium. Through these affiliations, he collaborates with global experts, fostering advancements in material phase design.

💼 Consultancy and Industry Projects

Dr. Yuan’s consultancy work, backed by national projects, directly benefits materials engineering and design fields. His contributions to phase diagram analysis and crystal structure exploration provide industries with innovative insights crucial to high-performance materials development.

Publications Top Noted📚

Crystal structure and thermodynamic properties of the new compound Sc₄Sb₂.₅₂ in the Sc-Sb system

Authors: Yuan, M., Li, C., Guo, C., Du, Z.

Journal: Journal of Alloys and Compounds

Year: 2024

Effect of Pr₂Fe₁₇ alloy doping Cr on magnetic and microwave absorption properties

Authors: Yuan, M., Yao, Q., Zhou, H., Li, C., Rao, G.

Journal: Journal of Materials Science: Materials in Electronics

Year: 2021

Phase Equilibria in the Ce-Pr-Fe System at 600 °C

Authors: Yuan, M., Yao, Q., Rao, G., Deng, J., Zhou, H.

Journal: Journal of Phase Equilibria and Diffusion.

Year: 2020