Prof. Zhuang Liu, Materials Science, Best Researcher Award

Prof. Zhuang Liu, Materials Science, Best Researcher Award

Professor at Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, China

Professional Profile

Scopus

🎓 Academic and Professional Background

Prof. Zhuang Liu Ph.D. in Materials Physics and Chemistry from the Chinese Academy of Sciences in 2010. Following this, I began my postdoctoral research at Chung Cheng University in Taiwan, China, in 2011. Since 2012, I have been associated with the Ningbo Institute of Materials Technology and Engineering, under the Chinese Academy of Sciences. In 2016, I undertook a year-long research project as a visiting scholar at Ames National Laboratory in the United States, gaining invaluable experience and expanding my knowledge in materials science.

🔬 Research and Innovations

Completed/Ongoing Research Projects: Includes the National Key R&D Program of China (Grant No. 2021YFB3503102), Zhejiang Provincial Natural Science Foundation Youth Original Project (Grant No. LDQ24E010001), and the Science and Technology Innovation 2025 Major Project of Ningbo (Grant No. 2022Z204).

🌐 Collaborative Projects

As the leader of a sub-project within China’s National Key Research and Development Plan for high-performance samarium-cobalt permanent magnet materials, I play a key role in advancing research in magnetic materials, working alongside top researchers to drive innovation in this area.

📚 Professional Memberships

I am a Senior Member of the Chinese Institute of Electronics, actively contributing to the advancement of electronic and materials research.

🔍 Areas of Research

My primary research focus is on the structure and magnetism of Sm2Co17-type magnets, a crucial field with applications in advanced magnetics and materials science. This includes an atomic-level analysis of material properties that impact performance and stability in practical applications.

Publications Top Noted📚 

Simultaneous enhancement of magnetic properties and flexural strength in 2:17 type SmCo magnets induced by spherical WO3 particles doping

Authors: Yang, Y., Liu, Z., Zhu, C., Chen, R., Yan, A.
Journal: Journal of Magnetism and Magnetic Materials
Year: 2024

Phase structure evolution and its effect on magnetic and mechanical properties of B-doped Sm2Co17-type magnets with high Fe content

Authors: Li, Y.-W., Liu, Z., Wu, H.-C., Chen, R.-J., Yan, A.-R.
Journal: Chinese Physics B
Year: 2024

Significant effect of ordered micro-domain on cell boundary phase distribution and demagnetization curve squareness of Sm2Co17-type magnet

Authors: Liu, Z., Wu, H.-C., Zhang, C.-Y., Chen, R.-J., Yan, A.
Journal: Rare Metals
Year: 2024

 Enhanced electrical resistivity in SmFe2-xSix alloys with large magnetostriction

Authors: Hou, R., Zhang, M., Xia, R., Liu, J., Yan, A.
Journal: Journal of Magnetism and Magnetic Materials
Year: 2024

Effect of CeO2 doping on the coercivity of 2:17 type SmCo magnets

Authors: Gao, X.-L., Liu, Z., Wang, G.-Q., Chen, R.-J., Yan, A.-R.
Journal: Chinese Physics B
Year: 2023

Dr. Kshipra Sharma, Materials Science, Best Researcher Award

Dr. Kshipra Sharma, Materials Science, Best Researcher Award

Doctorate at Lund University, Sweden

Professional Profile

Google Scholar

📚 Academic and Professional Background

Dr. Kshipra Sharma, a postdoctoral researcher at Lund University’s Centre for Analysis and Synthesis. My research investigates the growth dynamics of earth-abundant metal phosphides, such as nickel-phosphide (Ni-P), for catalyst applications using Environmental Transmission Electron Microscopy (ETEM). I hold a PhD in Nanoelectronics and Nanotechnologies from the University of Grenoble Alpes, France, specializing in atomic-scale defect formation and analysis in 2D materials like graphene and transition metal dichalcogenides using atomic-resolution TEM techniques. Additionally, I possess an integrated B.Tech-M.Tech in Nanotechnology from the University of Rajasthan, India. My expertise in advanced TEM-based techniques and nanomaterials structural engineering supports my current focus on developing low-cost and efficient catalysts for sustainable energy.

🔬 Areas of Research

Atomic-scale designing of nanostructures, including atomically thin 2D layers and nanoparticles for advancements in sustainable energy research.

📌 Key Research Projects

Formation dynamics study of earth-abundant nickel phosphide catalysts using Environmental Transmission Electron Microscopy (ETEM) for CO2 capture and conversion.

Investigating morphology-dependent hydrogen evolution reaction (HER) performance of Co2Ni-Phosphide heterostructures.

Designing bimetallic catalysts for hydrogen evolution reaction: Real-time growth study of nanoparticles with ETEM.

🧬 Previous Research Experience

Atomic-scale defect formation study in two-dimensional materials using advanced transmission electron microscopy (TEM) techniques (2019-2022).

PMMA removal from the graphene surface using downstream plasma (2019-2022).

Atomic-scale mapping of local electric field and electrostatic potential in 2D materials via four-dimensional (S)TEM (2019-2022).

Fabrication and modification of metal-fullerene nanocomposite using ion beam (2018-2019).

Development of flexible supercapacitors for wearable electronics (2017-2018).

Development of a targeted nano-drug delivery system for cancer treatment (2016).

Publications Top Noted📝 

Flexible supercapacitor based on three‐dimensional cellulose/graphite/polyaniline composite

Authors: Kshipra Sharma, Kapil Pareek, Rupesh Rohan, Pawan Kumar

Journal: International Journal of Energy Research

Year: 2019

Low temperature, easy scaling up method for development of smart nanostructure hybrid lipid capsules for drug delivery application

Authors: Sunil Kumar Yadava, Suparna Mercy Basu, Meenakshi Chauhan, Kshipra Sharma, Arpan Pradhan, V Remya, Jyotsnendu Giri

Journal: Colloids and Surfaces B: Biointerfaces

Year: 2020

Temperature induced surface plasmon resonance in Au/aC nanocomposite thin film

Authors: Ritu Vishnoi, Kshipra Sharma, Ganesh D Sharma, Rahul Singhal

Journal: Vacuum

Year: 2019

Investigation of sequential thermal annealing effect on Cu-C70 nanocomposite thin film

Authors: Ritu Vishnoi, Kshipra Sharma, Shriniwas Yadav, Rahul Singhal

Journal: Thin Solid Films

Year: 2019

Practice of electron microscopy on nanoparticles sensitive to radiation damage: CsPbBr3 nanocrystals as a case study

Authors: Tuan M Duong, Kshipra Sharma, Fabio Agnese, Jean-Luc Rouviere, Hanako Okuno, Stéphanie Pouget, Peter Reiss, Wai Li Ling

Journal: Frontiers in Chemistry

Year: 2022

Dr. Jiaojiao Du, Materials Science, Best Researcher Award

Dr. Jiaojiao Du, Materials Science, Best Researcher Award

Doctorate at Yangzhou Universtiy, China

Professional Profile

Scopus

🎓 Educational Background

Jiaojiao Du completed her Ph.D. in Materials Science at the School of Materials Science and Engineering, Northeastern University, Shenyang, China, from September 2011 to May 2016. Her doctoral research focused on the applications of nano film and granular film in magnetic and biomedical fields. Prior to her Ph.D., she pursued a Master’s degree in Condensed Matter Physics at the School of Science, also at Northeastern University, from September 2009 to July 2011, where she concentrated on exploring nanomaterial properties for scientific and practical applications. She began her academic journey with a Bachelor’s degree in Physics at the School of Science, Bohai University, Jinzhou, China, from September 2005 to July 2009, where she built a strong foundation in physics and materials science.

🔬 Research Areas

Jiaojiao’s research interests are extensive and centered around nano and protective film technologies. She investigates nano films and nano granular films, particularly nanocrystalline films applied in magnetic and biomedical fields, with a focus on understanding the growth and nucleation of these films under the influence of high magnetic fields. This work reveals the control mechanisms of nano film microstructures and their potential applications. Her work in absorbing materials involves developing hollow core and porous nano magnetic C-polyhedral nanoparticles with strong absorbing properties to combat electromagnetic radiation pollution, thus protecting electronic devices and human health. Additionally, Jiaojiao specializes in protective films and coatings that are wear-resistant, corrosion-resistant, and heat-conducting. These protective films significantly enhance thermal conductivity and insulation properties and are instrumental in extending the operational life of marine devices through self-cleaning coatings.

💼 Employment

Jiaojiao Du has contributed to academia and research in several prestigious institutions. As a Visiting Scholar at the Department of Mechanics and Engineering Science, Peking University, Beijing, China, from April 2019 to March 2020, she focused on developing microfluidic devices with nano films to separate and analyze circulating tumor cells using magnetic fields. Her work also included detection of tumor cell differentiation through electrical signals. Since May 2018, she has been a Lecturer at the College of Mechanical Engineering, Yangzhou University, Jiangsu, China, leading research on the growth and nucleation of magnetic nanocrystalline films and nanoparticle microstructures with absorbing properties for electromagnetic applications. Previously, she served as a Lecturer at the College of Mechanical and Electrical Engineering, Qingdao Binhai University, Shandong, China, from September 2016 to January 2018, where she investigated protective films that enhance thermal conductivity, corrosion resistance, and durability of marine devices.

🏆 Honors and Awards

Jiaojiao has received several notable awards for her contributions to science and technology. In 2022, she was awarded the Chinese Government Scholarship by the China Scholarship Council to support study abroad. In 2019, she was recognized for her contributions to the Lyu Yang Jin Feng Science and Technology Program, acknowledging her innovative projects in science and technology. She also held the position of Vice President of Science and Technology in the Double Initiative Project, which emphasized scientific advancements and technological innovation.

Publications Top Noted📝

Microstructural evolution and high-temperature oxidation behavior of plasma sprayed SiC-YSZ TBCs

Authors: Gong, J., Du, J., Wang, J., Wang, X., Yang, B.

Journal: Materials Characterization

Year: 2024

A new method for characterizing the atomic composition distribution and interface structure of ultrathin multilayer films using molecular dynamics simulation assisted ARXPS

Authors: Du, J., Yuan, H., Kou, H., Wu, P., Zhang, C.

Journal: Applied Surface Science

Year: 2024

Self-healing superhydrophobic coating with durability based on EP + PDMS/SiO2 double-layer structure design

Authors: Du, J., Wu, P., Kou, H., Rusinov, P., Zhang, C.

Journal: Progress in Organic Coatings

Year: 2024

Thermal-Elastic-Magnetic Coupling-Induced Rubbing Behaviors of a Bladed Thin-Walled Rotor with Distributed Magnetic Actuators

Authors: Kou, H., Cao, Y., Lee, H.P., Shi, Y., Du, J.

Journal: International Journal of Applied Mechanics

Year: 2024

Rubbing features of the bladed drum rotor under a novel coupled axial-radial thermal effect

Authors: Kou, H., Zhang, Y., Lee, H.P., Zhang, F., Zeng, L.

Journal: Acta Mechanica Sinica/Lixue Xuebao

Year: 2024

Mr. Endar Hidayat, Materials Science, Best Researcher Award

Mr. Endar Hidayat, Materials Science, Best Researcher Award

Mr. Endar Hidayat, Prefectural University of Hiroshima, Japan

Professional Profile

Scopus

Google Scholar

Orcid

Summary

🎯 Dedicated Researcher: Proven track record in life and environmental sciences, specializing in biomass waste recovery, slow-release fertilizers, polymer encapsulation, soil and plant analysis, and wastewater treatment. Strong collaboration skills and experience in interdisciplinary teams.

Education🎓

🎓 Ph.D. in Biological System Science (Life System Science) - Expected 09/2024
Prefectural University of Hiroshima, Shobara, Japan

  • Dissertation: Evaluation of Polymer and Biochar Composite Characteristics as Adsorbents for Soil Conditioning

🎓 M.Sc. in Biological System Science (Life and Environmental Science) - 10/2019 - 09/2021
Prefectural University of Hiroshima, Shobara, Japan

  • Thesis: Utilization of Biomass Waste and Wastewater as Fertilizers

🎓 B.Sc. in Management and Land Resources Environment - 07/2012 - 02/2018
Andalas University, Padang, Indonesia

  • Thesis: Land Suitability Evaluation of Arabica Coffee (Coffea Arabica L) Plantation

Professional Experience🔬

🔬 Research Assistant - 10/2021 to 03/2024
Prefectural University of Hiroshima, Shobara, Japan

  • Assessed student knowledge, supervised projects, developed research skills, mentored students, and presented at international conferences.

🌱 Head of Soil and Land Mapping - 08/2015 to 06/2018
Cooperative of Solok Radjo, Solok, Indonesia

  • Collaborated with local government for land suitability analysis, facilitated exports, and conducted sessions on the economic potential of Arabica coffee.

Research Interests

🌿 Environmental Sciences: Biomass waste recovery, biochar composite
🧪 Material Sciences: Polymer encapsulation, composite materials
💧 Water Treatment: Inorganic precipitation, crystallization, wastewater treatment
🌱 Agriculture: Soil and plant analysis, slow-release fertilizers

Skills🧠

  • Experimental Techniques: SEM-EDS, DLS, FTIR, UV-Vis, ICP, AAS, ion chromatography
  • Data Analysis: MINITAB, Origin, SPSS, ArcGIS, Global Mapper
  • Communication: Strong written and verbal skills, demonstrated through publications and presentations

Awards🏆

🏅 Research Internship (Innoqua Inc, Tokyo) - 03/2024
🏅 NIMS Internship Program (National Institute for Materials Science, Tsukuba) - 07/2023
🏅 Excellence Student Award (Prefectural University of Hiroshima) - 07/2022
🏅 Best Presenter (Andalas University, Indonesia) - 11/2021
🏅 MEXT Graduate Scholarship (Japan) - 10/2018 - 09/2024

Professional Membership👥

  • The Society of Chemical Engineers, Japan
  • Indonesian International Scholars Association
  • Indonesian Students Association in Japan

Notable Publication📰

Paper Title: Porous sodium alginate/poly (acrylic acid) composites cross-linked with FeCl3 for acid black 1 dye removal from aqueous solution
  •                           Authors: Torabinejad, M., Massana Roquero, P., et al.
  •                           Journal: Polymers
  •                           Year: 2022
Paper Title: Effects of sodium alginate-poly(acrylic acid) cross-linked hydrogel beads on soil conditioner in the absence and presence of phosphate and carbonate ions 
  •                          Authors: Hu, Z., Chen, X., et al.
  •                          Journal: ACS Omega
  •                          Year: 2018
Paper Title: Performance of hydrogel beads composites derived from sodium alginate-cetyltrimethylammonium bromide toward congo red dye adsorption from aqueous solution
  •                          Authors: Frent, A., et al.
  •                          Journal: International Journal of Molecular Sciences
  •                          Year: 2022

 

Paper Title: Simultaneous removal of ammonium, phosphate, and phenol via self-assembled biochar composites CBCZrOFe3O4 and its utilization as soil acidity amelioration
  •                         Authors: Hidayat, M., et al.
  •                         Journal: International Journal of Molecular Sciences
  •                         Year: 2023
Paper Title: Cr (VI) and Pb (II) Removal Using Crosslinking Magnetite-Carboxymethyl Cellulose-Chitosan Hydrogel Beads
  •                        Authors: Mohamad Sarbani, N. A., et al.
  •                        Journal: Gels
  •                        Year: 2023